
TREINAMENTOS

Lógica de Programação

Lógica de Programação em Java

2 de dezembro de 2015

i

Sumário ii

Prefácio vii

1 Introdução 1
1.1 O que é um Computador? . 1
1.2 Comunicação . 2
1.3 Formato Binário . 3
1.4 Unidades . 5
1.5 Arquiteturas de Processadores . 7
1.6 O que é um Programa? . 8
1.7 Linguagem de Máquina . 9
1.8 Linguagem de Programação . 9
1.9 Compilador . 10
1.10 Sistemas Operacionais . 10
1.11 Máquinas Virtuais . 12
1.12 Editores de Texto . 14
1.13 Terminal . 14
1.14 Hello World em Java . 14
1.15 Arquivos .java . 16
1.16 Arquivos .class . 16
1.17 Separando os Arquivos .java e os .class . 17
1.18 Versão do Compilador e da Máquina Virtual . 18
1.19 O que é o Método Main? . 18
1.20 Classes Executáveis . 20
1.21 Variações do Método Main . 20
1.22 Argumentos de Linha de Comando . 21
1.23 Exercícios de Fixação . 23
1.24 Exibindo Mensagens . 24
1.25 Comentários . 25
1.26 Indentação . 25
1.27 Engenharia Reversa . 26
1.28 Ofuscadores . 26
1.29 Exercícios de Fixação . 27
1.30 Erro: Compilar um arquivo inexistente . 28
1.31 Erro: Executar utilizando as extensões .class ou .java . 28
1.32 Erro: Não fechar os blocos . 28
1.33 Erro: Não fechar as aspas . 29
1.34 Erro: Trocar maiúsculas e minúsculas . 29
1.35 Erro: Esquecer o ponto e vírgula . 30
1.36 Erro: Esquecer o main . 30
1.37 Erro: Utilizar sequências de escape inválidas . 30
1.38 Exercícios Complementares . 31
1.39 Desafios . 32
1.40 Resumo . 32
1.41 Prova . 34

2 Variáveis 45
2.1 O que é uma Variável? . 45
2.2 Declarando e Inicializando Variáveis . 45

ii www.k19.com.br

iii SUMÁRIO

2.3 Exibindo os Valores das Variáveis . 47
2.4 Copiando Valores . 47
2.5 Tipos Primitivos . 49
2.6 Tipos Numéricos Não Primitivos . 53
2.7 String . 54
2.8 Data e Hora . 54
2.9 Valores Literais . 55
2.10 O Modificador final . 62
2.11 Números Aleatórios . 62
2.12 Convenções de Nomenclatura . 63
2.13 Regras de Nomenclatura . 65
2.14 Palavras Reservadas . 66
2.15 Exercícios de Fixação . 67
2.16 Erro: Variáveis com nomes repetidos . 68
2.17 Erro: Esquecer a inicialização de uma variável local . 68
2.18 Erro: Trocar aspas simples por aspas duplas ou vice-versa 69
2.19 Erro: Utilizar o separador decimal errado . 70
2.20 Erro: Valores incompatíveis com os tipos das variáveis 70
2.21 Erro: Esquecer dos caracteres de tipagem para long ou float 70
2.22 Exercícios Complementares . 71
2.23 Desafios . 72
2.24 Resumo . 72
2.25 Prova . 74

3 Operadores 81
3.1 Introdução . 81
3.2 Conversões Entre Tipos Primitivos . 81
3.3 Conversões Entre Tipos Primitivos e Não Primitivos . 83
3.4 Conversão Entre Tipos Primitivos e String . 85
3.5 Conversões Automáticas . 86
3.6 Exercícios de Fixação . 88
3.7 Operadores Aritméticos . 89
3.8 Tipo do Resultado de uma Operação Aritmética . 91
3.9 Divisão Inteira . 92
3.10 Overflow e Underflow . 96
3.11 Regras para Operações Aritméticas com Valores Especiais 98
3.12 Concatenação de Strings . 99
3.13 Operadores Unários + e - . 101
3.14 Exercícios de Fixação . 101
3.15 Operadores de Atribuição . 103
3.16 Operadores de Comparação . 106
3.17 Operadores Lógicos . 108
3.18 Exercícios de Fixação . 115
3.19 Operador Ternário ?: . 116
3.20 Operador de Negação . 117
3.21 Incremento e Decremento . 118
3.22 Avaliando uma Expressão . 124
3.23 Exercícios de Fixação . 129
3.24 Operações com Strings . 130

www.facebook.com/k19treinamentos iii

SUMÁRIO iv

3.25 Operações com Data e Hora . 134
3.26 Exercícios de Fixação . 135
3.27 Erro: Utilizar operandos e operadores incompatíveis . 136
3.28 Erro: Divisão inteira por zero . 137
3.29 Erro: Armazenamento de valores incompatíveis . 137
3.30 Erro: Castings não permitidos . 138
3.31 Exercícios Complementares . 139
3.32 Resumo . 142
3.33 Prova . 143

4 Controle de Fluxo 153
4.1 Introdução . 153
4.2 Instruções de Decisão . 153
4.3 Instrução if . 153
4.4 Instrução else . 156
4.5 Instruções de Decisão Encadeadas . 160
4.6 Exercícios de Fixação . 162
4.7 Instruções de Repetição . 165
4.8 Instrução while . 165
4.9 Instrução for . 170
4.10 Instruções de Repetição Encadeadas . 175
4.11 Exercícios de Fixação . 181
4.12 Instrução break . 183
4.13 Instrução continue . 192
4.14 Exercícios de Fixação . 197
4.15 Blocos Sem Chaves . 198
4.16 “Laços Infinitos” . 199
4.17 Instrução switch . 200
4.18 Instrução do-while . 202
4.19 Unreachable Code . 205
4.20 Exercícios de Fixação . 207
4.21 Erro: Não utilizar condições booleanas . 207
4.22 Erro: Else sem if . 208
4.23 Erro: Else com condição . 208
4.24 Erro: Ponto e vírgula excedente . 209
4.25 Erro: “Laço infinito” . 209
4.26 Erro: Chave do switch com tipos incompatíveis . 210
4.27 Erro: Casos do switch com expressões não constantes . 210
4.28 Erro: Break ou continue fora de um laço . 211
4.29 Erro: Usar vírgula ao invés de ponto e vírgula no laço for 211
4.30 Exercícios Complementares . 212
4.31 Resumo . 217
4.32 Prova . 218

5 Array 231
5.1 Introdução . 231
5.2 O que é um Array? . 231
5.3 Referências . 232
5.4 Declaração . 233
5.5 Inicialização . 234

iv www.k19.com.br

v SUMÁRIO

5.6 Acessando o Conteúdo de um Array . 235
5.7 Alterando o Conteúdo de um Array . 235
5.8 Outras Formas de Inicialização . 237
5.9 Percorrendo um Array . 237
5.10 Array Multidimensional . 239
5.11 Exercícios de Fixação . 245
5.12 Erro: Utilizar valores incompatíveis como índices de um array 247
5.13 Erro: Não definir a primeira dimensão de um array em sua inicialização 247
5.14 Erro: Acessar uma posição inválida de um array . 248
5.15 Exercícios Complementares . 248
5.16 Resumo . 250
5.17 Prova . 250

6 Métodos 255
6.1 Introdução . 255
6.2 Estrutura Geral de um Método . 255
6.3 Parâmetros . 256
6.4 Resposta . 258
6.5 Exercícios de Fixação . 262
6.6 Passagem de Parâmetros . 265
6.7 Sobrecarga . 268
6.8 Varargs . 270
6.9 Exercícios de Fixação . 272
6.10 Erro: Parâmetros incompatíveis . 273
6.11 Erro: Resposta incompatível . 274
6.12 Erro: Esquecer a instrução return . 275
6.13 Erro: Não utilizar parênteses . 276
6.14 Exercícios Complementares . 276
6.15 Resumo . 280
6.16 Prova . 281

7 String 287
7.1 Referências . 287
7.2 Pool de Strings . 288
7.3 Diferença Entre o Operador == e o Método equals . 289
7.4 Imutabilidade . 290
7.5 StringBuilder . 290
7.6 Formatação . 291
7.7 Formatação de Data e Hora . 298
7.8 Exercícios de Fixação . 299
7.9 Resumo . 304
7.10 Prova . 305

A Respostas 309
A.1 Introdução . 309
A.2 Variáveis . 322
A.3 Operadores . 333
A.4 Controle de Fluxo . 356
A.5 Array . 388
A.6 Metodos . 401

www.facebook.com/k19treinamentos v

SUMÁRIO vi

A.7 String . 420

vi www.k19.com.br

Prefácio

O conteúdo deste livro é uma introdução à lógica de programação e à linguagem Java. Apesar de
introdutório, os tópicos deste livro são apresentados com bastante profundidade. Portanto, este ma-
terial não é adequado para quem procura apenas um conhecimento superficial sobre programação.

O leitor não precisa ter experiência com programação. Mas, é necessário estar acostumado a
utilizar computadores no seu dia a dia e ter conhecimento sobre os tópicos básicos de matemática
abordados no ensino fundamental.

Organização

No Capítulo 1, serão apresentados os principais elementos de um computador e alguns conceitos
básicos como linguagem de máquina, linguagem de programação, compilador, sistema operacional
e máquina virtual. Além disso, o leitor terá o primeiro contato com um programa escrito em lingua-
gem Java.

No Capítulo 2, o conceito de variável será apresentado. Veremos o processo de criação de va-
riáveis utilizando a linguagem Java. Além disso, mostraremos os tipos primitivos dessa linguagem e
também o tipo String.

No Capítulo 3, veremos como as variáveis podem ser manipuladas através dos operadores da
linguagem Java. Serão apresentadas as operações de conversão, as aritméticas, as de atribuição, as
de comparação e as lógicas. Além disso, mostraremos o funcionamento do operador de negação e
do operador ternário.

No Capítulo 4, serão apresentadas as instruções de decisão e de repetição da linguagem Java.
Veremos como o fluxo de execução de um programa pode ser controlado com as instruções if, else,
while, for, switch, do, break e continue.

No Capítulo 5, será apresentado o conceito de array. Mostraremos como criar e manipular arrays
unidimensionais e multidimensionais. Além disso, discutiremos os principais erros relacionados aos
arrays.

No Capítulo 6, mostraremos como reutilizar código através da criação de métodos. Veremos
como definir e utilizar os parâmetros e o retorno de um método. Além disso, apresentaremos o con-
ceito de sobrecarga e varargs.

No Capítulo 7, características específicas dos objetos do tipo String serão discutidas. Dentre elas,
falaremos sobre imutabilidade, pool de strings e string builder. Além disso, mostraremos os recursos
da plataforma Java para formatação de strings.

Seções

As seções são classificadas de acordo com o nível de dificuldade. Seções que tratam de assuntos
considerados básicos, são marcadas com a figura . A imagem está associada às seções que

www.facebook.com/k19treinamentos vii

SUMÁRIO viii

cobrem assuntos com um nível intermediário de dificuldade. Já as seções com o ícone abordam
assuntos considerados de nível avançado.

Simulações

Para facilitar o entendimento do leitor, diversas simulações ilustradas foram adicionadas neste
livro. O objetivo das simulações é mostrar passo a passo a execução de um programa. A imagem
abaixo apresenta a ilustração de um passo de uma simulação.

class Variavel {
 public static void main (String [] args) {
 int a = 2;
 int b = a;
 System.out.println (a);
 System.out.println (b);
 }
}

1
2
3
4
5
6
7
8

a = 2

b= 2

Área de código Área das variáveis

Na área de código, é apresentado o código do programa cuja execução está sendo simulada. Na
área das variáveis, é possível visualizar as variáveis criadas até o momento e os seus valores atuais. A
linha ou instrução que está sendo executada no passo atual é destacada na área de código. Na área
das variáveis, as variáveis que foram alteradas no passo atual da simulação são apresentadas em uma
caixa de cor laranja e as que não foram alteradas em uma caixa de cor azul.

As mensagens exibidas pelos programas na saída padrão são apresentadas na área de saída. As
linhas exibidas no passo atual da simulação serão destacadas com um círculo laranja.

class Variavel {
 public static void main (String [] args) {
 int a = 2;
 int b = a;
 System.out.println (a);
 System.out.println (b);
 }
}

1
2
3
4
5
6
7
8

a = 2

b= 2

2
2

Área de saída

viii www.k19.com.br

INTRODUÇÃO

C
A

P
Í

T
U

L
O

1
1.1 O que é um Computador?

Atualmente, os computadores estão presentes no cotidiano da maioria das pessoas. Você, prova-
velmente, já está acostumado a utilizar computadores no seu dia a dia. Mas, será que você conhece
o funcionamento básico de um computador? A seguir, listaremos os principais elementos de um
computador e suas respectivas funções.

ULA + UC

Registradores

C
P

U
H

D
M

em
ória R

A
M

Figura 1.1: Principais elementos de um computador

HD (Disco Rígido): A principal função dos HDs é armazenar dados. Geralmente, os documentos
que os usuários salvam, por exemplo, arquivos de texto, planilhas eletrônicas, apresentações,
imagens, áudios e vídeos são guardados nos HDs. Normalmente, os dados e as operações dos
programas que os usuários instalam nos computadores também são mantidos nos discos rí-
gidos. O conteúdo armazenado nos HDs é persistente, ou seja, não é descartado quando os
computadores são desligados. Geralmente, os discos rígidos são capazes de armazenar uma
grande quantidade de dados. Contudo, as operações de acesso e de armazenamento de dados
não é considerada rápida.

www.facebook.com/k19treinamentos 1

INTRODUÇÃO 2

Memória RAM: A principal função da memória RAM é armazenar dados. O acesso e o armazena-
mento de dados na memória RAM é bem mais rápido do que nos HDs. Por isso, quando os
usuários executam um programa, os dados e operações desse programa são copiados do HD
para a memória RAM. Analogamente, os documentos abertos pelos usuários também são co-
piados do HD para a memória RAM. Geralmente, a quantidade de dados que podemos arma-
zenar na memória RAM é bem menor do que a quantidade de dados que podemos armazenar
nos HDs. Quando os computadores são desligados, os dados guardados na memória RAM são
descartados.

CPU (Unidade Central de Processamento - Processador): Basicamente, a tarefa da CPU é executar
operações aritméticas e operações lógicas. A UC (Unidade de Controle), a ULA (Unidade Ló-
gica e Aritmética) e os registradores são componentes básicos da CPU. Normalmente, a UC
copia uma operação de um programa armazenado na memória RAM e guarda os dados dessa
operação nos registradores. Na sequência, a ULA executa a operação acessando os dados ar-
mazenados nos registradores e guarda o resultado dessa operação também nos registradores.
Por fim, a UC copia o resultado armazenado nos registradores para a memória RAM.

1.2 Comunicação

Os computadores são capazes de se comunicar com dispositivos periféricos como teclado, mouse,
monitor, caixa de som, impressoras, projetores, entre outros. Eles também são capazes de se comu-
nicar com outros computadores. Essa comunicação é realizada através das diversas portas físicas
que os computadores possuem. A seguir, listaremos algumas portas físicas e as suas respectivas fun-
ções.

Ethernet: Utilizada para conectar um computador a uma rede local de computadores. Através dessa
porta, um computador pode enviar e receber dados de outros computadores.

Figura 1.2: Porta Ethernet

Paralela: Essa porta foi criada para conectar um computador a uma impressora. Hoje, é utilizada
também para conectar computadores a scanners, câmeras de vídeo, entre outros dispositivos.

Figura 1.3: Porta Paralela

2 www.k19.com.br

3 INTRODUÇÃO

PS/2: Teclados e mouses antigos são conectados aos computadores através dessa porta.

Figura 1.4: Porta PS/2

USB: Atualmente, é a porta mais utilizada. Diversos dispositivos são conectados aos computadores
através das portas USB. Por exemplo, teclados, mouses, impressoras, celulares, HDs externos,
entre outros.

Figura 1.5: Porta USB

HDMI: Essa porta é utilizada para transmissão digital de áudio e vídeo.

Figura 1.6: Porta HDMI

1.3 Formato Binário

Os computadores são capazes de receber, armazenar e enviar dados. Contudo, os computadores
só trabalham com dados em formato binário. A maior parte das pessoas não está acostumada a
utilizar o formato binário no seu dia a dia.

KB 0-X
8

POKET 801

MADE B
Y K

19

Analogia

Os textos que você está acostumado a escrever ou ler são escritos com as letras do
Alfabeto Latino. As 26 letras básicas do Alfabeto Latino são: A, B, C, D, E, F, G, H, I, J, K, L, M, N,
O, P, Q, R, S, T, U, V, W, X, Y e Z.

Em outras partes do mundo, outros alfabetos são utilizados. Por exemplo, na Grécia, as pessoas
utilizam o Alfabeto Grego. No Mundo Árabe, o Alfabeto Árabe. Na China, o Alfabeto Chinês.

Por analogia, podemos dizer que os computadores utilizam o Alfabeto Binário. Esse alfabeto é
composto pelo caractere 0 e pelo caractere 1. Todos os dados manipulados por um computador
devem ser definidos em formato binário, ou seja, com os caracteres 0 e 1.

Números

As pessoas estão acostumadas a lidar com os números em formato decimal. Os computadores,
por outro lado, trabalham com números em formato binário. Veja, a seguir, as representações deci-
mal e binária de alguns números.

www.facebook.com/k19treinamentos 3

INTRODUÇÃO 4

Decimal Binário
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

Decimal Binário
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000
17 10001
18 10010
19 10011

Decimal Binário
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101

Tabela 1.1: Representação decimal e binária

A quantidade mínima de dígitos binários necessários para definir a representação binária de um
número depende da grandeza do mesmo. Por exemplo, para representar o número 4, são necessários
pelo menos três dígitos binários. Agora, para representar o número 29, são necessários pelo menos
cinco dígitos binários.

Caracteres

Nos computadores, os caracteres de um texto também devem ser definidos em formato binário.
Para realizar essa transformação, primeiramente, cada caractere é associado a um valor numérico
inteiro. Por exemplo, o caractere “A” e o caractere “?” são normalmente associados aos valores 65 e
63, respectivamente. A representação binária de cada caractere corresponde à representação binária
do valor numérico associado a esse caractere.

Os caracteres são mapeados para formato binário através de padrões como ASCII (http://pt.
wikipedia.org/wiki/ASCII) e Unicode (http://pt.wikipedia.org/wiki/Unicode). Veja, a seguir,
a representação binária de alguns caracteres de acordo com o padrão ASCII.

Caractere Decimal Binário
A 65 01000001
B 66 01000010
C 67 01000011
D 68 01000100
E 69 01000101
F 70 01000110
G 71 01000111
H 72 01001000
I 73 01001001
J 74 01001010
K 75 01001011

Caractere Decimal Binário
L 76 01001100
M 77 01001101
N 78 01001110
O 79 01001111
P 80 01010000
Q 81 01010001
R 82 01010010
S 83 01010011
T 84 01010100
U 85 01010101
V 86 01010110

Tabela 1.2: Representação binária de caracteres seguindo o padrão ASCII

Normalmente, cada caractere corresponde a uma sequência composta por oito ou dezesseis dí-
gitos binários. A quantidade de dígitos utilizados limita a quantidade de caracteres que podem ser

4 www.k19.com.br

http://pt.wikipedia.org/wiki/ASCII
http://pt.wikipedia.org/wiki/ASCII
http://pt.wikipedia.org/wiki/Unicode

5 INTRODUÇÃO

representados. Por exemplo, com oito dígitos binários, podemos representar no máximo 256 carac-
teres. Com dezesseis dígitos binários, podemos representar até 65536 caracteres.

Imagens, áudios e vídeos

Como vimos, os números e os caracteres de um texto são facilmente representados em formato
binário. Contudo, os computadores também são capazes de manipular imagens, áudio e vídeo. Para
esses tipos de dados, a transformação para formato binário é bem mais complicada. Pesquise por
PNG, MP3 e AVI que são formatos binários de imagens, áudios e vídeos através dos seguinte endere-
ços:

• PNG - http://www.w3.org/TR/PNG/

• MP3 - http://en.wikipedia.org/wiki/MP3

• AVI - http://en.wikipedia.org/wiki/Audio_Video_Interleave

Resumidamente, para que um dado possa ser manipulado por um computador, ele deve ser con-
vertido para o formato binário de acordo com algum padrão.

1.4 Unidades

Você deve estar acostumado a medir distâncias utilizando as unidades de comprimento do Sis-
tema Internacional de Medidas (International System of Units – SI) como milímetro, centímetro,
metro e quilômetro. Os americanos e os ingleses utilizam com maior frequência as unidades de
medida do Imperial Unit como polegada, pé, jarda e milha.

De forma análoga, é importante ser capaz de medir a quantidade de dados que um computador
pode armazenar ou transmitir. Essa mensuração pode ser realizada com ajuda das unidades de me-
dida. A unidade de medida básica é o bit. Cada 0 ou 1 que um computador armazena ou transmite
é um bit. Por padrão, um byte corresponde a 8 bits. O símbolo utilizado para representar o byte é a
letra B.

A Comissão Eletrotécnica Internacional (International Electrotechnical Commission – IEC) e o
Sistema Internacional de Medidas (International System of Units – SI) definem unidades de medida
relacionadas ao byte. As unidades do padrão IEC 80000-13 utilizam valores que são potências de
1024. Já as unidades baseadas no SI utilizam valores que são potências de 1000. Veja a Tabela 1.3.

www.facebook.com/k19treinamentos 5

http://www.w3.org/TR/PNG/
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Audio_Video_Interleave

INTRODUÇÃO 6

IEC
Nome Símbolo Bytes
byte B 10240

kibibyte KiB 10241

mebibyte MiB 10242

gibibyte GiB 10243

tebibyte TiB 10244

pebibyte PiB 10245

exbibyte EiB 10246

zebibyte ZiB 10247

yobibyte YiB 10248

SI
Nome Símbolo Bytes
byte B 10000

kilobyte kB 10001

megabyte MB 10002

gigabyte GB 10003

terabyte TB 10004

petabyte PB 10005

exabyte EB 10006

zettabyte ZB 10007

yottabyte YB 10008

Tabela 1.3: Unidades de medida segundo o padrão IEC 80000-13 e o Sistema Internacional de Unidades

Contudo, não há um consenso na indústria de hardware e software quanto à utilização desses
padrões. Muitos sistemas operacionais informam a capacidade dos dispositivos de armazenamento
misturando o padrão SI e o padrão IEC 80000-13. Eles costumam utilizar os símbolos do padrão
SI com os valores do padrão IEC 80000-13. Já os fabricantes dos dispositivos de armazenamento
preferem utilizar plenamente as unidades do SI.

Unidades não Padronizadas
Nome Símbolo Bytes
byte B 10240

kilobyte kB 10241

megabyte MB 10242

gigabyte GB 10243

terabyte TB 10244

petabyte PB 10245

exabyte EB 10246

zettabyte ZB 10247

yottabyte YB 10248

Tabela 1.4: Unidades não padronizadas adotadas em muitos sistemas operacionais

Para exemplificar a confusão gerada pela utilização de unidades não padronizadas, considere o
disco rígido ST9750420AS fabricado pela Seagate Technology.

A capacidade real desse HD é 750156374016 bytes. Utilizando o padrão IEC 80000-13, podemos
dizer que esse disco rígido tem aproximadamente 698,63 GiB. Por outro lado, utilizando o padrão SI,
podemos dizer que esse disco rígido tem aproximadamente 750,15 GB.

A Seagate Technology, assim como as outras fabricantes de discos rígidos, preferem arredondar
para baixo a capacidade real dos HDs ao anunciar esses produtos aos clientes. Sendo assim, a Seagate
Technology anuncia que a capacidade do HD ST9750420AS é 750 GB. Portanto, a capacidade real é
um pouco maior do que a capacidade anunciada. Provavelmente, os compradores não se sentirão
prejudicados já que a capacidade real é maior do que a anunciada.

Agora vem a confusão. Sistemas operacionais como Windows 8 e OS X anteriores à versão 10.6
utilizam unidades de medida não padronizadas e informam aos usuários que o HD ST9750420AS de

6 www.k19.com.br

7 INTRODUÇÃO

750 GB possui capacidade igual a 698,63 GB. Os usuários que não sabem que esses sistemas ope-
racionais adotam unidades de medida diferentes das adotadas pelos fabricantes de HD se sentem
enganados.

1.5 Arquiteturas de Processadores

Os processadores só entendem operações definidas em formato binário. Para ilustrar, considere
as operações apresentadas na Figura 1.7. Essas operações são fictícias.

0 0 1 0 0 1 0 1 0 0 1 1

0 0 1 0 1 0 0 0 1 0 1 1

0 1 0 0 0 1 0 1 0 0 1 1

0 1 1 0 1 1 0 0 0 0 0 0

GRAVA 19

11

REG-1

REG-2

REG-2 REG-3REG-1

REG-3

GRAVA

SOMA

EXIBE

Figura 1.7: Instruções de processador

Nesse exemplo fictício, os três primeiros bits das instruções definem qual operação o proces-
sador deve executar. A operação “GRAVA” é representada pelo código “001”, a operação “SOMA” é
representada pelo código “010” e a operação “EXIBE” é representada pelo código “011”.

As operações do tipo “GRAVA” servem para armazenar um valor em um registrador. Por isso, é
necessário indicar o valor e o número do registrador onde esse valor deve ser armazenado. Tanto o
valor quanto o número do registrador são definidos em formato binário.

As operações do tipo “SOMA” servem para somar os valores armazenados em dois registradores
e guardar o resultado em um terceiro registrador. Por isso, é necessário indicar o número de três re-
gistradores. Os valores armazenados nos dois primeiros registradores são adicionados e o resultado
é armazenado no terceiro registrador.

As operações do tipo “EXIBE” servem para exibir na tela o valor armazenado em um registrador.
Por isso, é necessário indicar o número de um registrador. O valor armazenado nesse registrador é
exibido na tela.

A primeira instrução indica ao processador que o valor 19 deve ser gravado no registrador 1. A
segunda instrução indica que o valor 11 deve ser armazenado no registrador 2. Já a terceira instrução
determina a realização da adição dos valores anteriormente armazenados nos registradores 1 e 2 além
de indicar que o resultado deve ser armazenado no registrador 3. Por último, a quarta instrução
determina ao processador que o valor do registrador 3 deve ser exibido na tela.

Não há um padrão universal para o formato das instruções que os processadores podem execu-
tar. Consequentemente, as mesmas operações podem ser definidas de formas diferentes em dois
processadores distintos. Considere o exemplo fictício a seguir com algumas instruções para dois

www.facebook.com/k19treinamentos 7

INTRODUÇÃO 8

processadores de tipos diferentes.

0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1
REG-2 REG-1REG-3SOMA

Arquitetura X

Arquitetura Y 0 1 0 0 0 1 0 1 0 0 1 1
REG-2 REG-3REG-1SOMA

Figura 1.8: Instruções de processadores diferentes

As duas instruções mostradas na Figura 1.8 indicam aos processadores que o valor do registrador
1 deve ser adicionado ao valor do registrador 2 e o resultado deve ser armazenado no registrador 3.
Contudo, as sequências binárias dessas instruções são diferentes porque os processadores são de
arquiteturas diferentes.

As instruções que um processador pode executar são definidas pela sua arquitetura. As arquite-
turas de processadores mais utilizadas atualmente são x86, x86_64 e ARM.

1.6 O que é um Programa?

Os comandos que os processadores dos computadores oferecem são extremamente básicos. Nor-
malmente, são comandos para realizar operações aritméticas como adição, subtração, divisão e mul-
tiplicação, bem como operações para armazenar ou recuperar dados do disco rígido, da memória
RAM, dos registradores e de outros dispositivos de armazenamento. Geralmente, tarefas mais com-
plexas são resolvidas através de sequências desses comandos básicos.

Por exemplo, para calcular a média aritmética dos números 10, 15 e 20, devemos obter o valor do
somatório desses números através de operações básicas de adição. Depois, podemos utilizar uma
operação básica de divisão para dividir o valor desse somatório por 3 e assim obter o valor 15, que é
a média dos números.

Uma sequência de comandos básicos de processador que resolve uma determinada tarefa re-
cebe o nome de programa. Os programas são armazenados em arquivos comumente chamados de
executáveis.

Na prática, os programas são formados por instruções que dependem da arquitetura do proces-
sador. Consequentemente, um mesmo programa pode não funcionar em processadores de arquite-
turas diferentes.

KB 0-X
8

POKET 801

MADE B
Y K

19

Analogia

Da mesma forma que pintores são capazes de produzir pinturas sofisticadas utili-
zando apenas tinta, pincel e quadro, programadores são capazes de criar programas sofisticados
a partir dos recursos básicos oferecidos pelos computadores.

8 www.k19.com.br

9 INTRODUÇÃO

class Xpto{
 private int xpto;
 private String lala;

 public Xpto(int x,
 String l){
 this.xpto = xpto;
 this.lala = lala;
 }
}

Figura 1.9: Analogia entre programar e pintar

1.7 Linguagem de Máquina

Como vimos anteriormente, o formato dos comandos que um computador pode executar de-
pende basicamente da arquitetura do seu processador. Como existem diversas arquiteturas diferen-
tes, um mesmo comando pode funcionar em um computador e não funcionar em outro. O formato
dos comandos aceitos por um determinado processador define a linguagem de máquina ou código
de máquina desse processador.

Comandos definidos em linguagem de máquina são perfeitos para os computadores processa-
rem. Por outro lado, eles são extremamente complexos para as pessoas entenderem. Podemos veri-
ficar essa complexidade observando o trecho do programa Chrome exibido na Figura 1.10.

000
00010000000000100000000
000000000000111000011111101110100000111000000000101101000000100
111001101001000011011100000000001010011001100110100100001010101
000110100001101001011100110010000001110000011100100110111101100
111011100100110000101101101001000000110001101100001011011100110
111001101111011101000010000001100010011001010010000001110010011

Figura 1.10: Um trecho do programa Chrome

1.8 Linguagem de Programação

Como você já deve ter percebido, é extremamente complexo para uma pessoa escrever um pro-
grama diretamente em linguagem de máquina. Para tornar o desenvolvimento de programas uma
tarefa viável, foram criadas as linguagens de programação. Essas linguagens permitem que pessoas
possam criar programas de uma forma muito mais simples. Confira um trecho de código escrito com
a linguagem de programação Java:

1 double soma = 0;
2
3 for(int i = 0; i < numeros.length; i++) {
4 soma += numeros[i];
5 }
6
7 System.out.println("A soma é " + soma);

Código Java 1.1: Exemplo de código em Java

www.facebook.com/k19treinamentos 9

INTRODUÇÃO 10

Por enquanto, você não precisa se preocupar em entender o que está escrito no código acima.
Observe apenas que um programa escrito em linguagem de programação é bem mais fácil de ser
compreendido do que um programa escrito em linguagem de máquina.

1.9 Compilador

Vimos que os computadores são capazes de processar o código escrito em linguagem de má-
quina. Também vimos que é inviável desenvolver um programa em linguagem de máquina. Por isso,
existem as linguagens de programação. Daí surge uma pergunta: se os computadores entendem ape-
nas comandos em linguagem de máquina, como eles podem executar código escrito em linguagem
de programação?

Na verdade, os computadores não executam código escrito em linguagem de programação. Esse
código que é denominado código fonte deve ser traduzido para código em linguagem de máquina.
Essa tradução é realizada por programas especiais chamados compiladores.

while(true){
 if(x < 1){
 return 0;
 }

 return 1;
}

while(true){
 if(x < 1){
 return 0;
 }

 return 1;
}

PROCESSADORCÓDIGO FONTE NÃO EXECUTA

CÓDIGO FONTE COMPILADOR CÓDIGO DE MÁQUINA PROCESSADOR EXECUTA

Figura 1.11: Processo de compilação e execução de um programa

1.10 Sistemas Operacionais

Normalmente, os programas instalados em um computador são armazenados no disco rígido.
Para executar um programa, as instruções que definem esse programa devem ser copiadas do disco
rígido para a memória RAM. Essa cópia é realizada através dos comandos oferecidos pelo processa-
dor.

Geralmente, as pessoas não possuem conhecimentos técnicos suficientes para utilizar os coman-
dos dos processadores. Dessa forma, elas não conseguiriam copiar as instruções de um programa do
disco rígido para a memória RAM. Consequentemente, elas não conseguiriam executar programas
através dos computadores.

Para facilitar a interação entre os usuários e os computadores, foram criados programas especi-
ais denominados sistemas operacionais. Os sistemas operacionais funcionam como intermediários
entre os usuários e os computadores. Os principais sistemas operacionais atuais oferecem uma in-
terface visual. Através dessa interface os usuários podem controlar o funcionamento dos computa-
dores.

10 www.k19.com.br

11 INTRODUÇÃO

Figura 1.12: Interação entre usuário e sistema operacional

Em sistemas operacionais como o Windows, geralmente, o usuário clica duas vezes em um ícone
correspondente ao programa que ele deseja executar e o Windows se encarrega de copiar as ins-
truções desse programa do disco rígido para a memória RAM. Dessa forma, o usuário não precisa
conhecer os comandos dos processadores para executar um programa.

Os sistemas operacionais controlam a execução dos programas. Inclusive, eles permitem que vá-
rios programas sejam executados simultaneamente. Além disso, oferecem diversas funcionalidades
aos usuários, como controlar o volume das caixas de som, o brilho do monitor, o acesso à internet
entre outros.

Os sistemas operacionais também oferecem diversos serviços aos próprios programas. Por exem-
plo, as impressoras configuradas pelos usuários são gerenciadas pelos sistemas operacionais. Qual-
quer programa que deseja interagir com uma impressora pode utilizar os recursos oferecidos pelos
sistemas operacionais para esse propósito. Sendo assim, os sistemas operacionais funcionam como
intermediários entre os programas e os computadores.

Figura 1.13: Interação entre programa e sistema operacional

As principais tarefas de um sistema operacional são:

• Gerenciar a execução dos programas.

• Controlar o acesso à memória RAM e ao disco rígido.

• Administrar os dispositivos conectados ao computador.

• Simplificar a interação entre os programas e o computador.

• Simplificar a interação entre o usuário e o computador.

Sistemas operacionais diferentes podem oferecer recursos diferentes para os programas. No pro-
cesso de compilação, geralmente, os programas são preparados para utilizar os recursos de um deter-
minado sistema operacional. Dessa forma, um programa que funciona em um determinado sistema
operacional pode não funcionar em outro sistema operacional.

www.facebook.com/k19treinamentos 11

INTRODUÇÃO 12

1.11 Máquinas Virtuais

Como vimos anteriormente, o código fonte de um programa deve ser compilado para que esse
programa possa ser executado por um computador. Além disso, vimos que os compiladores geram
executáveis específicos para um determinado sistema operacional e uma determinada arquitetura
de processador. Qual é o impacto disso para quem desenvolve sistemas para múltiplas plataformas?

A empresa que deseja ter uma aplicação disponível para diversos sistemas operacionais (Win-
dows, Linux, OS X, etc) e diversas arquiteturas de processadores (x86, x86_64, ARM, etc) deverá de-
senvolver e manter um programa para cada plataforma (a combinação de um sistema operacional e
uma arquitetura de processador). Consequentemente, os custos dessa empresa seriam muito altos.

PROGRAMA 1 PLATAFORMA 1 EXECUTA

EXECUTAPROGRAMA 2 PLATAFORMA 2

NÃO EXECUTAPROGRAMA 2 PLATAFORMA 3

Figura 1.14: Ilustração mostrando que cada plataforma necessita de um executável específico

Para diminuir os custos e aumentar a produtividade, podemos utilizar as chamadas máquinas
virtuais. As máquinas virtuais são programas especiais que permitem que um programa possa ser
executado em diversas plataformas diferentes. Nesse cenário, o desenvolvimento e a execução de
um programa são realizados através dos seguintes passos:

1. O programador escreve o código fonte do programa utilizando uma linguagem de programa-
ção.

2. O compilador traduz o código fonte para um código intermediário escrito em uma linguagem
que a máquina virtual entende.

3. A máquina virtual processa o código intermediário e o traduz para código de máquina.

4. O código de máquina é executado no computador.

12 www.k19.com.br

13 INTRODUÇÃO

MÁQUINA VIRTUAL 1 PLATAFORMA 1 EXECUTA

MÁQUINA VIRTUAL 2 EXECUTAPROGRAMA PLATAFORMA 2

MÁQUINA VIRTUAL 3 EXECUTAPLATAFORMA 3

Figura 1.15: Ilustração do funcionamento da máquina virtual

Na analogia da Figura 1.15, o programa seria o plugue, as máquinas virtuais seriam os adapta-
dores e as plataformas seriam as tomadas. Como as tomadas seguem padrões diferentes, são neces-
sários adaptadores para encaixar o mesmo plugue em todas as tomadas. Analogamente, como as
plataformas seguem padrões diferentes, são necessárias máquinas virtuais para executar o mesmo
programa em todas as plataformas.

Para cada plataforma, uma máquina virtual específica é necessária. Todas as máquinas virtuais
devem saber ler as instruções do programa que desejamos executar para depois traduzi-las para a
linguagem de máquina da plataforma correspondente. Dessa forma, as máquinas virtuais atuam
como tradutores.

Assim como qualquer coisa, alguém precisa desenvolver as máquinas virtuais. Qualquer pessoa
pode desenvolver uma máquina virtual. Contudo, essa é uma tarefa que exige conhecimento técnico
muito avançado. Por isso, normalmente, os programadores que desenvolvem os programas não de-
senvolvem as máquinas virtuais. Geralmente, as máquinas virtuais são desenvolvidas por grandes
empresas ou são projetos de código aberto que envolvem programadores experientes do mundo in-
teiro.

As máquinas virtuais podem ser gratuitas ou pagas. Os maiores exemplos de máquinas virtu-
ais são a Oracle JVM (Java Virtual Machine), a OpenJDK JVM, a Microsoft CLR (Common Language
Runtime) e a Mono CLR.

A nossa explicação sobre máquinas virtuais pode dar a entender que elas funcionam apenas
como meros tradutores ou adaptadores. Contudo, é importante destacar que as máquinas virtu-
ais oferecem diversos outros recursos como gerenciamento de memória e otimização em tempo de
execução.

www.facebook.com/k19treinamentos 13

INTRODUÇÃO 14

1.12 Editores de Texto

O código fonte de um programa Java pode ser criado através de editores de texto simples. No
Windows, recomendamos a utilização do Notepad ou do Notepad++. No Linux, recomendamos a
utilização do gedit. No OS X, recomendamos a utilização do TextWrangler. Esses editores são todos
gratuitos.

1.13 Terminal

A maior parte dos usuários dos computadores não possui conhecimento sobre programação. Es-
ses usuários interagem com os computadores através das interfaces visuais oferecidas pelos sistemas
operacionais. Geralmente, essas interfaces visuais não exigem conhecimentos técnicos.

Os sistemas operacionais oferecem também interfaces baseadas em texto. Essas interfaces não
são muito agradáveis para a maior parte dos usuários. Porém, geralmente, elas são mais práticas
para os programadores.

No Windows, o programa Command Prompt e o programa Windows Power Shell permitem que
os usuários controlem o computador através de uma interface baseada em texto. Nos sistemas ope-
racionais da família Unix, há diversos programas que oferecem esse tipo de interface. Geralmente,
esses programas são chamados de Terminal.

1.14 Hello World em Java

Vamos criar o nosso primeiro programa para entendermos como funciona o processo de codifi-
cação, compilação e execução de um programa em Java.

Importante

Antes de compilar e executar um programa escrito em Java, é necessário que você tenha
instalado e configurado em seu computador o JDK (Java Development Kit). Consulte o artigo
da K19 sobre como instalá-lo e configurá-lo:

http://www.k19.com.br/artigos/instalando-o-jdk-java-development-kit/.

O primeiro passo é escrever o código fonte do programa. Qualquer editor de texto pode ser uti-
lizado. No exemplo abaixo, o código fonte foi armazenado no arquivo HelloWorld.java. O nome do
arquivo não precisa ser HelloWorld mas a extensão deve ser obrigatoriamente .java. Considere que o
arquivo HelloWorld.java foi salvo na pasta introducao.

1 class HelloWorld {
2 public static void main(String [] args) {
3 System.out.println("Hello World");
4 }
5 }

Código Java 1.2: HelloWorld.java

14 www.k19.com.br

http://www.k19.com.br/artigos/instalando-o-jdk-java-development-kit/

15 INTRODUÇÃO

Por enquanto, não se preocupe em entender perfeitamente o código do arquivo HelloWorld.java.
Apenas observe que, na primeira linha, foi definida uma classe chamada HelloWorld. O corpo dessa
classe é delimitado pela chave de abertura da primeira linha e a chave de fechamento da última
linha. No corpo da classe HelloWorld, o método main foi definido. O corpo desse método é delimitado
pela chave de abertura da segunda linha e a chave de fechamento da quarta linha. No corpo do
método main, a instrução System.out.println("HelloWorld") indica que a mensagem “HelloWorld” deve
ser exibida na tela. Essa instrução deve terminar com ponto e vírgula.

O próximo passo é abrir um terminal, entrar na pasta introducao e depois compilar o arquivo
HelloWorld.java.

K19$ cd introducao

K19/introducao$ javac HelloWorld.java

Terminal 1.1: Compilando o arquivo HelloWorld.java em ambiente Unix

C:\Users\K19\introducao > cd introducao

C:\ Users\K19\introducao > javac HelloWorld.java

Terminal 1.2: Compilando o arquivo HelloWorld.java no Windows

O comando cd altera o diretório atual do terminal. No exemplo acima, esse comando foi utilizado
para alterar o diretório atual do terminal para introducao.

O comando javac aciona o compilador da linguagem Java. No exemplo acima, esse comando foi
utilizado para compilar o arquivo HelloWorld.java. O compilador traduz o código fonte do arquivo
HelloWorld.java e armazena o código compilado em um novo arquivo chamado HelloWorld.class. O
nome do arquivo .class gerado pelo compilador é igual ao nome da classe contida no arquivo Hello-

World.java.

Para conferir se o arquivo HelloWorld.class foi criado, podemos utilizar o comando ls nos termi-
nais dos sistemas operacionais da família Unix ou o comando dir no Command Prompt do Windows.
Esses comandos listam o conteúdo da pasta atual do terminal.

K19/introducao$ ls
HelloWorld.class HelloWorld.java

Terminal 1.3: Listando o diretório atual do terminal em ambiente Unix

C:\Users\K19\introducao > dir
O volume na unidade C não tem nome
O Número de Serie do Volume é 063B-6F3D

Pasta de C:\Users\K19\introducao

14 -07 -2009 06:41 <DIR > .
14 -07 -2009 06:41 <DIR > ..
14 -07 -2009 06:52 425 HelloWorld.class
14 -07 -2009 06:52 106 HelloWorld.java

2 File(s) 531 bytes
2 Dir(s) 57 ,925 ,980 ,160 bytes disponíveis

Terminal 1.4: Listando o diretório atual do terminal em ambiente Windows

Agora, podemos executar o nosso programa através do comando java.

www.facebook.com/k19treinamentos 15

INTRODUÇÃO 16

K19/introducao$ java HelloWorld
Hello World

Terminal 1.5: Executando a classe HelloWorld em ambiente Unix

C:\Users\K19\introducao > java HelloWorld
Hello World

Terminal 1.6: Executando a classe HelloWorld em ambiente Windows

Para executar a classe HelloWorld que está no arquivo HelloWorld.class, a extensão .class não deve
ser utilizada.

Mais Sobre

A maioria das linguagens de programação são case sensitive. Isso significa que elas
diferenciam as letras maiúsculas das minúsculas. Portanto, ao escrever o código de um pro-
grama, devemos tomar cuidado para não trocar uma letra maiúscula por uma letra minúscula
ou vice-versa.

1.15 Arquivos .java

O código fonte de um programa em Java deve, obrigatoriamente, ser armazenado em um ou mais
arquivos com a extensão .java. Não é permitida a utilização de letras maiúsculas nessa extensão. Por
exemplo, considere o arquivo Programa.Java mostrado a seguir.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println("K19");
4 }
5 }

Código Java 1.3: Programa.Java

A extensão está incorreta pois utiliza letra maiúscula. Na tentativa de compilar esse arquivo, um
erro será gerado.

K19/introducao$ javac Programa.Java
error: Class names , ’Programa.Java ’, are only accepted if annotation processing is explicitly requested

Terminal 1.7: Compilando o arquivo Programa.Java em ambiente Unix

C:\Users\K19\introducao> javac Programa.Java
error: Class names , ’Programa.Java ’, are only accepted if annotation processing is explicitly requested

Terminal 1.8: Compilando o arquivo Programa.Java em ambiente Windows

1.16 Arquivos .class

Normalmente, um arquivo .java contém apenas uma classe. Contudo, é possível definir diversas
classes em um único arquivo .java. No exemplo abaixo, as classes Cosen, Lobato e Jonas foram definidas
no arquivo Programa.java

16 www.k19.com.br

17 INTRODUÇÃO

1 class Cosen {
2 public static void main(String [] args) {
3 System.out.println("Cosen");
4 }
5 }
6 class Lobato {
7 public static void main(String [] args) {
8 System.out.println("Lobato");
9 }
10 }
11 class Jonas {
12 public static void main(String [] args) {
13 System.out.println("Jonas");
14 }
15 }

Código Java 1.4: Programa.java

Na compilação do arquivo Programa.java, três arquivos .class são gerados: Cosen.class, Lobato.class
e Jonas.class. Esses arquivos contêm as instruções do programa em linguagem de máquina. Mais es-
pecificamente, eles contêm as instruções do programa na linguagem da máquina virtual Java (Java
bytecode). Esses arquivos correspondem às classes Cosen, Lobato e Jonas definidas no arquivo Progra-

ma.java. Essas classes podem ser executadas independentemente.

K19/introducao$ javac Programa.java
K19/introducao$ java Cosen
Cosen
K19/introducao$ java Lobato
Lobato
K19/introducao$ java Jonas
Jonas

Terminal 1.9: Executando as classes Cosen Lobato e Jonas em ambiente Unix

C:\Users\K19\introducao> javac Programa.java
C:\Users\K19\introducao> java Cosen
Cosen
C:\Users\K19\introducao> java Lobato
Lobato
C:\Users\K19\introducao> java Jonas
Jonas

Terminal 1.10: Executando as classes Cosen Lobato e Jonas em ambiente Windows

1.17 Separando os Arquivos .java e os .class

Por uma questão de organização, podemos separar os arquivos .java e os arquivos .class em pas-
tas diferentes. Através da opção -d do compilador Java, podemos indicar em qual pasta os arquivos
.class gerados pelo compilador devem ser armazenados.

K19/introducao$ javac -d bin Programa.java
K19/introducao$ cd bin
K19/introducao$ ls
Cosen.class Jonas.class Lobato.class

Terminal 1.11: Separando os arquivos .java e os .class em ambiente Unix

C:\Users\K19\introducao> javac -d bin Programa.java
C:\Users\K19\introducao> cd bin
C:\ Users\K19\introducao> dir
O volume na unidade C não tem nome
O Número de Serie do Volume é 063B-6F3D

www.facebook.com/k19treinamentos 17

INTRODUÇÃO 18

Pasta de C:\Users\K19\introducao

07/04/2014 03:13 PM <DIR > .
07/04/2014 03:13 PM <DIR > ..
07/04/2014 03:07 PM 404 Cosen.class
07/04/2014 03:07 PM 404 Jonas.class
07/04/2014 03:07 PM 405 Lobato.class

3 File(s) 1,213 bytes
2 Dir(s) 57 ,925 ,980 ,160 bytes disponíveis

Terminal 1.12: Separando os arquivos .java e os .class em ambiente Windows

No exemplo acima, o arquivo Programa.java foi compilado e os arquivos Cosen.class, Lobato.class e
Jonas.class gerados na compilação foram armazenados na pasta bin. Essa pasta deve ser criada antes
da compilação.

1.18 Versão do Compilador e da Máquina Virtual

No momento em que este livro foi escrito, a última versão da linguagem Java era a 8. Para verificar
qual é a versão do compilador Java instalado no seu computador, você pode utilizar a opção -version
do comando javac.

K19/introducao$ javac -version
javac 1.8.0

Terminal 1.13: Verificando a versão do compilador Java

Também podemos verificar a versão da máquina virtual através da opção -version do comando
java.

K19/introducao$ java -version
java version "1.8.0"
Java(TM) SE Runtime Environment (build 1.8.0- b132)
Java HotSpot(TM) 64-Bit Server VM (build 25.0-b70 , mixed mode)

Terminal 1.14: Verificando a versão do ambiente de execução Java

1.19 O que é o Método Main?

Um programa é basicamente uma sequência de instruções. As instruções de um programa es-
crito em Java devem ser definidas dentro do método main.

1 class Programa {
2 public static void main(String [] args) {
3 PRIMEIRA INSTRUÇÃO
4 SEGUNDA INSTRUÇÃO
5 TERCEIRA INSTRUÇÃO
6 . . .
7 }
8 }

Código Java 1.5: Método main

O método main é o começo do programa. Podemos dizer que o “ponto de partida” de um pro-
grama em Java é a primeira instrução do método main. As demais instruções são executadas na

18 www.k19.com.br

19 INTRODUÇÃO

mesma ordem na qual estão definidas no código. Eventualmente, durante a execução das instru-
ções, algum erro pode ocorrer e interromper o fluxo do processamento.

De acordo com a especificação da linguagem Java, o método main deve receber um array de strings
como parâmetro, ter o tipo de retorno void e ser definido com os modificadores public e static. So-
mente classes que possuem o método main de acordo com essas regras podem ser executadas.

Lembre-se

O funcionamento dos arrays será abordado no Capítulo 5. Os conceitos de método, parâ-
metro e tipo de retorno serão apresentados no Capítulo 6.

Lembre-se

Neste livro, não serão abordados o conceito de classe e os modificadores public e static.

Simulação

Veremos, a seguir, uma simulação de execução de um programa em Java.

1 Ao executar a classe ExibeMensagens, a execução é iniciada na primeira linha do método main. Ou
seja, ela começa na linha 3 do código abaixo. A instrução presente nessa linha exibe o caractere “A”
na saída padrão.

1 class ExibeMensagens {
2 public static void main(String [] args) {
3 System.out.println("A");
4 System.out.println("B");
5 System.out.println("C");
6 }
7 }

A

2 Em seguida, a linha 4 é executada e o caractere “B” é exibido na saída padrão.

1 class ExibeMensagens {
2 public static void main(String [] args) {
3 System.out.println("A");
4 System.out.println("B");
5 System.out.println("C");
6 }
7 }

A
B

3 Seguindo o fluxo de execução, a linha 5 é executada e o caractere “C” é exibido na saída padrão.

www.facebook.com/k19treinamentos 19

INTRODUÇÃO 20

1 class ExibeMensagens {
2 public static void main(String [] args) {
3 System.out.println("A");
4 System.out.println("B");
5 System.out.println("C");
6 }
7 }

A
B
C

1.20 Classes Executáveis

Somente as classes que possuem o método main podem ser executadas. A tentativa de executar
uma classe que não possui o método main gera um erro de execução.

1 class Programa {
2
3 }

Código Java 1.9: Programa.java

K19/introducao$ javac Programa.java
K19/introducao$ java Programa
Error: Main method not found in class Programa , please define the main method as:

public static void main(String [] args)

Terminal 1.18: Tentando executar uma classe que não possui o método main

1.21 Variações do Método Main

A forma tradicional do método main é mostrada no código a seguir.

1 public static void main(String [] args)

Código Java 1.10: Forma tradicional do método main

Algumas variações da forma tradicional do método main são aceitas. Por exemplo, a posição dos
modificadores public e static pode ser invertida.

1 static public void main(String [] args)

Código Java 1.11: Invertendo os modificadores public e static

O nome do parâmetro pode ser alterado.

1 public static void main(String [] argumentos)

Código Java 1.12: Alterando o nome do parâmetro

Os colchetes podem ser definidos à direita do nome do parâmetro.

20 www.k19.com.br

21 INTRODUÇÃO

1 public static void main(String args [])

Código Java 1.13: Alterando a posição dos colchetes

O parâmetro pode ser definido com varargs, representado pelas reticências no código abaixo.

1 public static void main(String ... args)

Código Java 1.14: Utilizando varargs

Lembre-se

No Capítulo 6, mostraremos com mais detalhes a definição de parâmetros com varargs.

1.22 Argumentos de Linha de Comando

Considere um programa que calcula a média das notas dos alunos de uma escola. Esse programa
poderia receber as notas de um determinado aluno, calcular a média e depois exibi-la na tela.

Ao executar um programa em Java, podemos passar argumentos na linha de comando para o
método main. Por exemplo, considere uma classe chamada Programa com método main. No exemplo
abaixo, essa classe foi executada e nenhum argumento de linha de comando foi passado para o mé-
todo main.

K19/introducao$ java Programa

Terminal 1.19: Executando a classe Programa sem argumentos de linha de comando

Agora, no próximo exemplo, a classe Programa foi executada com três argumentos de linha de
comando: K19, Livros e Java.

K19/introducao$ java Programa K19 Livros Java

Terminal 1.20: Executando a classe Programa com três argumentos de linha de comando

A cada execução da classe Programa, argumentos diferentes podem ser passados na linha de co-
mando. Esses argumentos podem ser recuperados dentro do método main. No exemplo abaixo, cria-
mos um programa que exibe na saída padrão o primeiro, o segundo e o terceiro argumento da linha
de comando. O primeiro argumento é acessado através da variável args[0]. O segundo argumento é
acessado através da variável args[1]. O terceiro argumento é acessado através da variável args[2].

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println(args [0]);
4 System.out.println(args [1]);
5 System.out.println(args [2]);
6 }
7 }

Código Java 1.15: Recuperando os argumentos de linha de comando

A seguir é exibida a saída do programa ao executar a classe Programa com três argumentos de linha
de comando.

www.facebook.com/k19treinamentos 21

INTRODUÇÃO 22

K19/introducao$ java Programa K19 Livros Java
K19
Livros
Java

Terminal 1.21: Executando a classe Programa com três argumentos de linha de comando

Mais Sobre

O funcionamento dos arrays será abordado no Capítulo 5.

Você não pode esquecer que, ao executar uma classe, os argumentos de linha de comando são
separados por espaço e o primeiro parâmetro vem imediatamente à direita do nome da classe. O
índice do primeiro argumento é 0, do segundo é 1, do terceiro é 2 e assim sucessivamente.

K19/introducao$ java Programa arg0 arg1 arg2

Terminal 1.22: Argumentos de linha de comando

Para definir um argumento de linha de comando que contém um ou mais espaços, o caractere
aspas dupla deve ser utilizado para delimitar esse argumento.

K19/introducao$ java Programa "Rafael Cosentino" "Rafael Lobato" "Marcelo Martins"

Terminal 1.23: Argumentos de linha de comando

Simulação

Veremos, a seguir, uma simulação de execução de um programa em Java que exibe os três pri-
meiros argumentos da linha de comando na saída padrão.

1 Suponha que a classe Argumentos tenha sido executada com os argumentos “K19”, “Java” e “Ló-
gica”, como no exemplo abaixo.

java Argumentos K19 Java Lógica

Como sabemos, o fluxo de execução do programa inicia na primeira linha do método main. Ou
seja, ele começa na linha 3 do código abaixo. A instrução presente nessa linha exibe o primeiro
argumento da linha de comando, isto é, exibe “K19” na saída padrão.

1 class Argumentos {
2 public static void main(String [] args) {
3 System.out.println(args [0]);
4 System.out.println(args [1]);
5 System.out.println(args [2]);
6 }
7 }

K19

2 Em seguida, a linha 4 é executada e o segundo argumento da linha de comando é exibido. Sendo
assim, a palavra “Java” é exibida na saída padrão.

22 www.k19.com.br

23 INTRODUÇÃO

1 class Argumentos {
2 public static void main(String [] args) {
3 System.out.println(args [0]);
4 System.out.println(args [1]);
5 System.out.println(args [2]);
6 }
7 }

K19
Java

3 Seguindo o fluxo de execução, a linha 5 é executada e o terceiro argumento da linha de comando
é exibido na saída padrão, isto é, a palavra “Lógica” é exibida.

1 class Argumentos {
2 public static void main(String [] args) {
3 System.out.println(args [0]);
4 System.out.println(args [1]);
5 System.out.println(args [2]);
6 }
7 }

K19
Java
Lógica

1.23 Exercícios de Fixação

1 Abra um terminal e crie uma pasta chamada k19. Essa será a sua pasta de exercícios.

2 Dentro da pasta k19, crie uma pasta chamada introducao para os arquivos desenvolvidos nesse
capítulo.

3 Utilize um editor de texto e implemente um programa com a linguagem de programação Java.
Esse programa deve exibir a mensagem “Hello World” na saída padrão. O código fonte desse pro-
grama deve ser armazenado em um arquivo chamado HelloWorld.java. Esse arquivo deve ser salvo na
pasta introducao.

4 Através do terminal, entre na pasta introducao; compile o arquivo HelloWorld.java; e execute o
programa.

5 Crie um programa utilizando a linguagem de programação Java. Esse programa deve exibir os
dois primeiros argumentos de linha de comando. O código fonte desse programa deve ser armaze-
nado em um arquivo chamado Argumentos.java. Esse arquivo deve ser salvo na pasta introducao.

6 Através do terminal, entre na pasta introducao; compile o arquivo Argumentos.java; e execute o
programa com os argumentos “K19” e “Livros” na linha de comando.

www.facebook.com/k19treinamentos 23

INTRODUÇÃO 24

7 Crie duas classes com método main chamadas Oi e Tchau. Ao executar a classe Oi, a mensagem “Oi”
deve ser exibida na saída padrão. Ao executar a classe Tchau, a mensagem “Tchau” deve ser exibida
na saída padrão. O código fonte dessas duas classes deve ser armazenado em um arquivo chamado
OiTchau.java. Esse arquivo deve ser salvo na pasta introducao.

8 Através do terminal, entre na pasta introducao; compile o arquivo OiTchau.java; e execute a classe
Oi e depois a classe Tchau.

1.24 Exibindo Mensagens

Geralmente, as linguagens de programação possuem comandos para exibir mensagens na saída
padrão (tela do terminal). Nos programas em Java, podemos utilizar o seguinte trecho de código para
exibir uma mensagem na saída padrão.

1 System.out.println("MENSAGEM");

Código Java 1.19: Exibindo uma mensagem na saída padrão

Para adicionar quebras de linha ou tabulações nas mensagens, é necessário utilizar as chama-
das “sequências de escape”. Uma quebra de linha é definida com a sequência de escape “\n”. Uma
tabulação, com “\t”.

Na Tabela 1.5, as sequências de escape da linguagem Java são apresentadas.

Sequência de escape Descrição
\t Adiciona uma tabulação (tab)
\b Volta para o caractere anterior (backspace)
\n Adiciona uma quebra de linha (newline)
\r Volta para o início da linha (carriage return)
\f Adiciona uma quebra de página (formfeed)
\’ Adiciona o caractere aspas simples
\" Adiciona o caractere aspas dupla
\\ Adiciona uma barra invertida

Tabela 1.5: Sequências de escape

1 System.out.println("\tRafael");
2 System.out.println("Linha1\nLinha2");
3 System.out.println("Digite \’sim\’");
4 System.out.println("Jonas disse: \"Olá\"");
5 System.out.println("C:\\K19\\ Livros");

Código Java 1.20: Exemplos de uso das sequências de escape

Rafael
Linha1
Linha2
Digite ’sim ’
Jonas disse: "Olá"
C:\K19\Livros

Terminal 1.28: Exemplos de uso das sequências de escape

24 www.k19.com.br

25 INTRODUÇÃO

O método println adiciona uma quebra de linha no final da mensagem exibida. Para exibir men-
sagens sem quebra de linha, podemos utilizar o método print.

1 System.out.print("MENSAGEM SEM QUEBRA DE LINHA");

1.25 Comentários

Podemos acrescentar comentários em qualquer ponto do código fonte. Geralmente, os comen-
tários funcionam como anotações que o programador adiciona no código fonte para explicar a lógica
do programa. Eles são úteis tanto para o próprio programador que os escreveu quanto para outros
programadores que, eventualmente, precisam ler e/ou alterar o código fonte.

Os compiladores ignoram os comentários inseridos no código fonte. Portanto, no código de má-
quina gerado pela compilação do código fonte, os comentários não são inseridos.

Em Java, para comentar uma linha, podemos utilizar a marcação //.

1 System.out.println("K19");
2 // comentário de linha
3 System.out.println("Rafael Cosentino");

Código Java 1.22: Comentário de linha

Também é possível comentar um bloco com os marcadores /* e */.

1 System.out.println("K19");
2 /* comentário de bloco
3 todo esse trecho
4 está comentado */
5 System.out.println("Rafael Cosentino");

1.26 Indentação

A organização do código fonte é fundamental para o entendimento da lógica de um programa.
Cada linguagem de programação possui os seus próprios padrões de organização. Observe a organi-
zação padrão do código fonte escrito com a linguagem de programação Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println("K19");
4 System.out.println("Lógica de Programação em Java");
5 }
6 }

Código Java 1.24: Programa.java

Para visualizar facilmente a organização dos blocos (trechos delimitados por chaves), o código
fonte deve ser indentado. A indentação consiste em deixar uma certa quantidade de espaços em
branco ou tabulações no começo de cada linha.

No exemplo acima, a linha 1 não está dentro de nenhum bloco. Por isso, nenhum espaço em
branco foi deixado no começo dessa linha. A linha 2 está dentro do bloco da classe Programa. Por

www.facebook.com/k19treinamentos 25

INTRODUÇÃO 26

isso, uma tabulação foi adicionada no começo dessa linha. As linhas 3 e 4 estão dentro do bloco do
método main que, por sua vez, está dentro do bloco da classe Programa. Por isso, duas tabulações foram
adicionadas no começo dessa linha. A linha 5 está dentro do bloco da classe Programa. Por isso, uma
tabulação foi adicionada no começo dessa linha. A linha 6 não está dentro de nenhum bloco. Por
isso, nenhum espaço em branco foi deixado no começo dessa linha.

Um código corretamente indentado é mais fácil de ler. Consequentemente, a sua manutenção se
torna mais simples.

Mais Sobre

Você pode verificar a convenção de indentação da linguagem Java definida pela Oracle
no seguinte endereço:

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-136091.html

1.27 Engenharia Reversa

Talvez você já tenha desmontado um brinquedo ou algum aparelho eletrônico para tentar des-
cobrir como ele funciona. Ao fazer isso, mesmo sem saber, você praticou engenharia reversa.

Muitas empresas praticam engenharia reversa para entender o funcionamento dos produtos dos
concorrentes. Países também utilizam esse tipo de abordagem para avaliar a capacidade militar dos
outros países.

A engenharia reversa também é aplicada na área de software. As instruções do código de má-
quina de um programa podem ser traduzidas para alguma linguagem de programação através de
programas especiais que são chamados de decompiladores.

Normalmente, o código em linguagem de programação gerado a partir da decompilação do có-
digo de máquina de um programa não é fácil de entender. Geralmente, é possível, apesar de nor-
malmente ser muito difícil, modificar o funcionamento de um programa para qualquer que seja o
propósito utilizando a abordagem da engenharia reversa.

1.28 Ofuscadores

Para dificultar o processo de engenharia reversa, podemos utilizar ferramentas que modificam o
código fonte ou o código compilado com o intuito de prejudicar o processo de decompilação. Essas
ferramentas são chamadas de ofuscadores.

Na maior parte dos casos, a utilização de ofuscadores torna inviável ou muito custosa a aplicação
de engenharia reversa com intuito de “copiar” ou “piratear” um software.

26 www.k19.com.br

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-136091.html

27 INTRODUÇÃO

1.29 Exercícios de Fixação

9 Crie um arquivo na pasta introducao chamado Triangulo.java. Implemente um programa que
exiba na saída padrão um triângulo de asteriscos semelhante ao mostrado a seguir. Não utilize
sequências de escape para desenvolver esse programa.

*
**

10 Através do terminal, entre na pasta introducao; compile o arquivo Triangulo.java; e execute o
programa.

11 Crie um arquivo na pasta introducao chamado TrianguloComBarraN.java. Implemente um programa
que exiba na saída padrão um triângulo de asteriscos semelhante ao mostrado a seguir. Utilize a
sequência de escape “\n” para desenvolver esse programa.

*
**

12 Através do terminal, entre na pasta introducao; compile o arquivo TrianguloComBarraN.java; e exe-
cute o programa.

13 Crie um arquivo na pasta introducao chamado Cursos.java. Implemente um programa que exiba
na saída padrão a sigla e o nome de alguns cursos da K19 de acordo com o padrão abaixo. Utilize a
sequência de escape “\t” para desenvolver esse programa.

K01
Lógica de Programação

K02
Desenvolvimento Web com HTML, CSS e JavaScript

K03
SQL e Modelo Relacional

14 Através do terminal, entre na pasta introducao; compile o arquivo Cursos.java; e execute o pro-
grama.

www.facebook.com/k19treinamentos 27

INTRODUÇÃO 28

1.30 Erro: Compilar um arquivo inexistente

Um erro de compilação comum em Java é compilar um arquivo inexistente. Normalmente, esse
erro ocorre porque o arquivo foi salvo em outra pasta ou com um nome diferente.

No exemplo abaixo, o nome do arquivo que deveria ser compilado é Programa.java. Contudo, na
compilação, esquecemos da letra “a” e solicitamos a compilação de um arquivo chamado Program.java.
Como esse arquivo não existe, um erro de compilação é gerado.

K19/introducao$ ls
Programa.java

K19/introducao$ javac Program.java
javac: file not found: Program.java
Usage: javac <options > <source files >
use -help for a list of possible options

Terminal 1.29: Erro de compilação

1.31 Erro: Executar utilizando as extensões .class ou .java

Um erro comum em Java é executar um programa utilizando a extensão .java ou a extensão
.class. Observe, nos exemplos a seguir, esse erro ocorrendo.

K19/introducao$ java Program.java
Error: Could not find or load main class Programa.java

Terminal 1.30: Erro de tentativa de execução

K19/introducao$ java Program.class
Error: Could not find or load main class Programa.class

Terminal 1.31: Erro de tentativa de execução

1.32 Erro: Não fechar os blocos

Um erro de compilação comum em Java é esquecer de fechar os blocos com chave. Observe, nos
exemplos a seguir, esse erro ocorrendo.

1 class Programa {
2 public static void main(String [] args) {
3 // instruções
4 }

Código Java 1.25: Programa.java

1 class Programa {
2 public static void main(String [] args) {
3 // instruções

Código Java 1.26: Programa.java

Veja a mensagem que o compilador do Java exibe quando um bloco não é fechado corretamente.

28 www.k19.com.br

29 INTRODUÇÃO

Programa.java :2: error: reached end of file while parsing
public static void main(String [] args) {

^
1 error

Terminal 1.32: Erro de compilação

1.33 Erro: Não fechar as aspas

Um erro de compilação comum em Java é esquecer de fechar as aspas. No exemplo a seguir, falta
uma aspas dupla na linha 3.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println("K19);
4 }
5 }

Código Java 1.27: Programa.java

Veja a mensagem que o compilador do Java exibe quando as aspas não são fechadas correta-
mente.

Programa.java :3: error: unclosed string literal
System.out.println ("K19);

^
Programa.java :3: error: ’;’ expected

System.out.println ("K19);
^

Programa.java :5: error: reached end of file while parsing
}
^

3 errors

Terminal 1.33: Erro de compilação

1.34 Erro: Trocar maiúsculas e minúsculas

Um erro de compilação comum em Java é utilizar letras maiúsculas onde deveriam ser utilizadas
letras minúsculas ou vice-versa. No exemplo a seguir, o identificador System foi escrito com “s”, porém
o correto é com “S”.

1 class HelloWorld {
2 public static void main(String [] args) {
3 system.out.println("Hello World");
4 }
5 }

Código Java 1.28: HelloWorld.java

Veja a mensagem de erro do compilador Java.

HelloWorld.java :3: error: package system does not exist
system.out.println ("Hello World ");

^
1 error

Terminal 1.34: Erro de compilação

www.facebook.com/k19treinamentos 29

INTRODUÇÃO 30

1.35 Erro: Esquecer o ponto e vírgula

Para encerrar uma instrução, devemos utilizar o caractere “;”. Não inserir esse caractere no final
das instruções gera erro de compilação. No exemplo abaixo, falta um ponto e vírgula no final da linha
3.

1 class HelloWorld {
2 public static void main(String [] args) {
3 System.out.println("Hello World")
4 }
5 }

Código Java 1.29: HelloWorld.java

Veja a mensagem de erro do compilador Java.

HelloWorld.java :3: error: ’;’ expected
System.out.println ("Hello World")

^
1 error

Terminal 1.35: Erro de compilação

1.36 Erro: Esquecer o main

Todo programa deve ter um “ponto de partida”. Em Java, todo programa precisa do método main.
Se você esquecer de definir o método main, obterá um erro de execução.

1 class HelloWorld {
2 public static void Main(String [] args) {
3 System.out.println("Hello World");
4 }
5 }

Código Java 1.30: HelloWorld.java

Observe que no código Java acima, o método main foi definido com letra maiúscula. Contudo, no
Java, o correto é com minúscula. Ao compilar o código, nenhum erro ocorre. Mas, ao executar, o
seguinte erro é exibido.

K19/k19$ javac HelloWorld.java
K19/k19$ java HelloWorld
Error: Main method not found in class HelloWorld , please define the main method as:

public static void main(String [] args)

Terminal 1.36: Erro de execução

1.37 Erro: Utilizar sequências de escape inválidas

Utilizar sequências de escape inválidas gera erro de compilação. No exemplo abaixo, a sequência
“\x” foi utilizada. Contudo, ela não é uma sequência de escape válida.

1 class HelloWorld {
2 public static void Main(String [] args) {

30 www.k19.com.br

31 INTRODUÇÃO

3 System.out.println("Hello\xWorld");
4 }
5 }

Código Java 1.31: HelloWorld.java

Veja a mensagem do compilador Java.

HelloWorld.java :3: error: illegal escape character
System.out.println ("Hello\xWorld ");

^
1 error

Terminal 1.37: Erro de compilação

1.38 Exercícios Complementares

1 Na pasta introducao, crie um arquivo chamado DuasMensagens.java. Implemente um programa
que mostre a seguinte saída. Compile e execute esse programa.

Hello World 1
Hello World 2

2 Na pasta introducao, crie um arquivo chamado FrasePreferida.java. Implemente um programa
que mostre na saída padrão a sua frase preferida. Compile e execute esse programa.

3 Na pasta introducao, crie um arquivo chamado K19.java. Implemente um programa que mostre a
seguinte saída. Compile e execute esse programa.

#####
#
#
######
#
#
#####

www.facebook.com/k19treinamentos 31

INTRODUÇÃO 32

1.39 Desafios

1 Crie um programa em Java para exibir o seu nome de forma semelhante ao mostrado abaixo.

______ __ _ _____ _ _
| ___ \ / _| | | / __ \ | | (_)
| |_/ /__ _| |_ __ _ ___| | | / \/ ___ ___ ___ _ __ | |_ _ _ __ ___
| // _` | _/ _` |/ _ \ | | | / _ \/ __|/ _ \ '_ \| __| | '_ \ / _ \
| |\ \ (_| | || (_| | __/ | | __/\ (_) __ \ __/ | | | |_| | | | | (_) |
_| ___,_|_| __,_|___|_| ____/___/|___/___|_| |_|__|_|_| |_|___/

2 Pesquise na internet sobre ASCII Art. Crie programas para exibir imagens em ASCII Art.

1.40 Resumo

1 Os principais elementos de um computador são: CPU, memória RAM e HD.

2 A CPU executa as instruções dos programas.

3 Geralmente, os arquivos dos usuários e dados dos programas instalados no computador são
armazenados no HD.

4 Geralmente, quando o usuário executa um programa, os dados desse programa são copiados
do HD para memória RAM.

5 Os dados armazenados na memória RAM são descartados quando o computador é desligado.

6 Os dados armazenados no HD não são descartados quando o computador é desligado.

7 Os computadores se comunicam com outros computadores ou com dispositivos periféricos
através de portas como ethernet, paralela, USB e HDMI.

8 Os dados manipulados por um computador são definidos em formato binário.

9 Os principais padrões de codificação de caracteres são ASCII e Unicode.

32 www.k19.com.br

33 INTRODUÇÃO

10 Algumas unidades de medida para dados binários do padrão IEC 80000-13 são: bit, byte (B),
kibibyte (KiB), mebibyte (MiB), gibibyte (GiB) e tebibyte (TiB).

11 Algumas unidades de medida para dados binários do SI são: bit, byte (B), kilobyte (kB), me-
gabyte (MB), gigabyte (GB) e terabyte (TB).

12 Os comandos que um processador pode executar são definidos pela sua arquitetura.

13 Processadores de arquiteturas diferentes entendem comandos diferentes.

14 Atualmente, as arquiteturas de processador mais utilizadas são: x86, x86_64 e ARM.

15 Um programa é uma sequência de instruções que resolve uma determinada tarefa.

16 As linguagens de programação são mais fáceis para pessoas entenderem do que as linguagens
de máquina.

17 Os programas são definidos em linguagem de programação.

18 Os compiladores traduzem o código fonte de um programa para código de máquina.

19 Os sistemas operacionais gerenciam a execução dos programas; controlam o acesso à memória
RAM e ao disco rígido; administram os dispositivos conectados ao computador; simplificam a inte-
ração entre os programas e o computador; e simplificam a interação entre o usuário e o computador.

20 As máquinas virtuais permitem a criação de programas portáveis.

21 Todo programa necessita de um “ponto de partida”. O ponto de partida dos programas escritos
em Java é a primeira instrução do método main.

22 Ao executar um programa em Java, podemos passar argumentos de linha de comando.

23 No código fonte de um programa em Java, comentários são inseridos com os marcadores “//”,
“/*” e “*/”.

24 A maioria das linguagens de programação são case sensitive.

www.facebook.com/k19treinamentos 33

INTRODUÇÃO 34

25 A indentação melhora a legibilidade do código fonte.

26 Código escrito em linguagem Java deve ser armazenado em arquivos com a extensão “.java”.

27 Para que uma classe em Java seja executável, ela deve possuir o método main.

28 Em Java, o método println é utilizado para exibir mensagens com quebra de linha na saída
padrão.

29 Em Java, o método print é utilizado para exibir mensagens sem quebra de linha na saída pa-
drão.

1.41 Prova

1 Qual alternativa está correta?

a) A principal função dos processadores é armazenar dados.

b) Os dados armazenados no disco rígido são perdidos quando o computador é desligado.

c) O acesso aos dados armazenados na memória RAM é mais rápido do que o acesso aos dados
armazenados nos registradores do processador.

d) Geralmente, o espaço de armazenamento da memória RAM é menor do que o espaço de ar-
mazenamento do disco rígido.

e) A memória RAM é a principal responsável pela execução das instruções de um programa.

2 Qual alternativa está correta?

a) Um computador não pode transmitir dados para outro computador.

b) A conexão entre os teclados e os computadores é realizada através da porta Ethernet.

c) As portas USB são a única forma de estabelecer a comunicação dos computadores com os
dispositivos periféricos.

d) Atualmente, diversos dispositivos podem ser conectados aos computadores através das portas
USB.

e) Os mouses atuais são conectados aos computadores através das portas HDMI.

3 Qual é a representação binária do número 19?

34 www.k19.com.br

35 INTRODUÇÃO

a) 00019

b) 10011

c) 10101

d) 11001

e) 01101

4 Qual é a representação decimal do número em formato binário 101101?

a) 10

b) 27

c) 45

d) 72

e) 95

5 Qual é o código do caractere “K” de acordo com a tabela ASCII?

a) 01000101

b) 01000100

c) 01000011

d) 01000001

e) 01001011

6 Quantos bits ocupa um arquivo de 19 KiB?

a) 19000

b) 19

c) 8192

d) 1048576

e) 155648

7 Qual alternativa está errada?

www.facebook.com/k19treinamentos 35

INTRODUÇÃO 36

a) x86 e x86_64 são arquiteturas de processador.

b) Os comandos que um processador pode executar dependem da arquitetura desse processador.

c) Todos os comandos executados por um processador de uma arquitetura também podem ser
executados por um processador de outra arquitetura.

d) As instruções que os processadores executam são definidas em binário.

e) Processadores executam código em linguagem de máquina.

8 Qual é a melhor definição de “programa”?

a) Um programa é uma sequência de instruções que realiza determinada tarefa.

b) Um programa é um computador capaz de realizar uma única tarefa.

c) Um programa é uma linguagem de programação.

d) Um programa é uma sequência de bits aleatórios.

9 Qual alternativa está correta?

a) Java é uma linguagem de programação.

b) Java é uma linguagem de máquina.

c) Java é um sistema operacional

d) Java é um programa.

10 Qual é a função dos compiladores?

a) Traduzir código de máquina para código fonte.

b) Executar código de máquina.

c) Executar código fonte.

d) Armazenar os dados do computador.

e) Traduzir código fonte para código de máquina.

11 Qual é a melhor definição de “sistema operacional”?

a) Um sistema operacional é uma linguagem de máquina.

36 www.k19.com.br

37 INTRODUÇÃO

b) Um sistema operacional é uma linguagem de programação.

c) Um sistema operacional é um programa especial que controla a execução de outros progra-
mas.

d) Um sistema operacional é um computador especial.

e) Um sistema operacional é um tipo de processador.

12 Qual é a vantagem das linguagens de programação que utilizam máquinas virtuais?

a) A criação de programas “portáveis”.

b) Essas linguagens possuem mais comandos.

c) Os programas desenvolvidos com essas linguagens são mais rápidos.

d) A criação de programas específicos para um sistema operacional.

e) Os programas desenvolvidos com essas linguagens consomem menos memória.

13 Qual alternativa possui apenas nomes válidos para arquivos de código fonte Java?

a) “K19.java” e “Treinamentos.Java”.

b) “K19.java” e “Treinamentos.java”.

c) “K19.JAVA” e “Treinamentos.java”.

d) “K19.JAVA” e “Treinamentos.JAVA”.

e) “K19.Java” e “Treinamentos.Java”.

14 Qual é o comando utilizado para executar o compilador da linguagem Java?

a) JavaC.

b) javac.

c) java-compiler.

d) java.

e) jc.

15 Qual é o comando utilizado para executar um programa Java?

www.facebook.com/k19treinamentos 37

INTRODUÇÃO 38

a) javac.

b) JAVA.

c) java.

d) java-run.

e) jvm.

16 Qual é a extensão dos arquivos que armazenam código compilado de um programa Java?

a) .java

b) .class

c) .exe

d) .prog

e) .sh

17 Ao compilar o arquivo Programa.java, quantos arquivos com a extensão “.class” serão gerados?

1 class Cosen {
2 public static void main(String [] args) {
3 System.out.println("Cosen");
4 }
5 }
6 class Lobato {
7 public static void main(String [] args) {
8 System.out.println("Lobato");
9 }
10 }
11 class Jonas {
12 public static void main(String [] args) {
13 System.out.println("Jonas");
14 }
15 }

Código Java 1.32: Programa.java

a) Nenhum

b) Um

c) Dois

d) Três

e) Quatro

18 O que podemos dizer sobre uma linguagem de programação case sensitive?

38 www.k19.com.br

39 INTRODUÇÃO

a) Ela diferencia letras maiúsculas de letras minúsculas.

b) Ela é independente de sistema operacional.

c) Ela é orientada a objetos.

d) Ela possui mais comandos.

e) Ela possui menos comandos.

19 Por padrão, ao compilar um arquivo “.java”, os arquivos “.class” gerados são salvos na mesma
pasta do arquivo “.java”. Qual opção do compilador Java permite alterar essa pasta?

a) -f

b) -folder

c) -d

d) -directory

e) -out

20 Para verificar a versão do compilador Java ou do ambiente de execução Java, qual opção podemos
utilizar ao executar os comandos javac ou java?

a) -version

b) -v

c) -ver

d) -versao

21 Qual alternativa declara corretamente o método main?

a) public static main(String[] args)

b) public static void Main(String[] args)

c) void main(String[] args)

d) static void Main()

e) public static void main(String[] args)

22 Qual código pode ser utilizado para exibir a mensagem “K19” em Java?

www.facebook.com/k19treinamentos 39

INTRODUÇÃO 40

a) system.out.println("K19")

b) System.out.println("K19")

c) System.Console.WriteLine("K19")

d) system.console.writeLine("K19")

e) print("K19")

23 Qual sequência de escape indica uma “quebra de linha”?

a) \n

b) \r

c) \f

d) \t

e) \b

24 Quais são os marcadores utilizados para inserir comentários nos programas em Java?

a) “//” e “%”.

b) “#”, “//”, “/*” e “*/”.

c) “//”, “/*” e “*/”.

d) “<!- -” e “- ->”.

e) “%” e “#”.

25 Considere o seguinte programa em Java.

1 class Argumentos {
2 public static void main(String [] args) {
3 System.out.println(args [0]);
4 System.out.println(args [1]);
5 }
6 }

Código Java 1.33: Argumentos.java

O que seria exibido na saída padrão se a classe Argumentos fosse executada com o seguinte co-
mando?

java Argumentos K19 Livros

40 www.k19.com.br

41 INTRODUÇÃO

a) java e Argumentos

b) Argumentos e K19

c) K19 e Livros

d) java e K19

e) Argumentos e Livros

26 Qual alternativa está correta?

a) O compilador Java executa o método main.

b) Toda classe deve possuir o método main.

c) Toda classe pode ser executada.

d) As classes que possuem o método main podem ser executadas.

e) Ao executar uma classe sem o método main, o primeiro método dessa classe será executado.

27 Considere o seguinte código Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println("K19");
4 }

Código Java 1.34: Programa.java

O que podemos afirmar sobre esse código?

a) Na compilação do arquivo Programa.java, ocorrerá um erro porque os blocos não foram fecha-
dos corretamente.

b) Na execução da classe Programa, ocorrerá um erro porque os blocos não foram fechados corre-
tamente.

c) Na execução da classe Programa, a mensagem “K19” será exibida na saída padrão.

d) Na compilação do arquivo Programa.java, ocorrerá um erro porque o caractere “;” foi utilizado
incorretamente.

e) Na execução da classe Programa, ocorrerá um erro porque o caractere “;” foi utilizado incorreta-
mente.

28 Considere o seguinte código Java.

www.facebook.com/k19treinamentos 41

INTRODUÇÃO 42

1 class Programa {
2 public static void main(String [] args) {
3 system.out.println("K19");
4 }
5 }

Código Java 1.35: Programa.java

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque o identificador String não existe.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque o identificador String não
existe.

c) Na execução da classe Programa, a mensagem “K19” será exibida na saída padrão.

d) Na execução da classe Programa, ocorrerá um erro porque o identificador system não existe.

e) Na compilação do arquivo Programa.java, ocorrerá um erro porque o identificador system não
existe.

29 Considere o seguinte código Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println("K19")
4 }
5 }

Código Java 1.36: Programa.java

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque faltou um “;” no final da linha 4.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque faltou um “;” no final da
linha 4.

c) Na execução da classe Programa, a mensagem “K19” será exibida na saída padrão.

d) Na execução da classe Programa, ocorrerá um erro porque faltou um “;” no final da linha 3.

e) Na compilação do arquivo Programa.java, ocorrerá um erro porque faltou um “;” no final da
linha 3.

30 Considere o seguinte código Java.

1 class Programa {
2 public static void Main(String [] args) {
3 System.out.println("K19");
4 }
5 }

Código Java 1.37: Programa.java

42 www.k19.com.br

43 INTRODUÇÃO

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque ela não possui o método main.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque a classe Programa não possui
o método main.

c) Na execução da classe Programa, a mensagem “K19” será exibida na saída padrão.

d) Na execução da classe Programa, ocorrerá um erro porque faltou um “;” no final da linha 3.

e) Na compilação do arquivo Programa.java, ocorrerá um erro porque faltou um “;” no final da
linha 3.

31 Considere uma pasta chamada introducao. Nessa pasta, há apenas um arquivo chamado Progra-

ma.java. O que podemos dizer sobre o seguinte comando?

K19/introducao$ javac Program.java

a) Um erro de compilação ocorrerá informando que o arquivo Program.java não existe.

b) Um erro de compilação ocorrerá informando que o arquivo deve ter a extensão .class.

c) Um erro de compilação ocorrerá informando que a extensão .java não deve ser utilizada na
compilação.

d) Nenhum erro de compilação ocorrerá.

e) Um erro de execução ocorrerá.

32 Considere o seguinte código Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println("K19);
4 }
5 }

Código Java 1.38: Programa.java

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque ela não possui o método main.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque a classe Programa não possui
o método main.

c) Na execução da classe Programa, a mensagem “K19” será exibida na saída padrão.

d) Na execução da classe Programa, ocorrerá um erro porque as aspas não foram fechadas correta-
mente.

www.facebook.com/k19treinamentos 43

INTRODUÇÃO 44

e) Na compilação do arquivo Programa.java, ocorrerá um erro porque as aspas não foram fechadas
corretamente.

33 Considere o seguinte código Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println("K19");
4 }
5 }

Código Java 1.39: Programa.java

O que podemos afirmar sobre os seguintes comandos?

K19/introducao$ javac Programa.java

K19/introducao$ java Programa.class

a) Na execução, ocorrerá um erro porque a classe Programa não pode ser executada.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque este arquivo não pode ser
compilado.

c) Na execução, a mensagem “K19” será exibida na saída padrão.

d) Na execução, ocorrerá um erro porque a extensão .class foi utilizada incorretamente.

e) Na compilação do arquivo Programa.java, ocorrerá um erro pois a extensão .java foi utilizada
incorretamente.

Minha Pontuação Pontuação Mínima: 26 Pontuação Máxima: 33

44 www.k19.com.br

VARIÁVEIS

C
A

P
Í

T
U

L
O

2
2.1 O que é uma Variável?

Considere um programa que calcula a média das notas dos alunos de uma escola. Para realizar
esse cálculo, o programa precisa manipular os valores das notas dos alunos. Para manipular esses
valores, o programa deve armazená-los em variáveis.

As variáveis são utilizadas para armazenar os dados que um programa deve manipular. Toda
variável possui um nome (identificador). Para acessar ou alterar o conteúdo de uma variável, é ne-
cessário utilizar o nome dessa variável. Em Java, cada variável possui um tipo. O tipo de uma variável
determina o que pode ou não ser armazenado nela. Por exemplo, podemos determinar que uma va-
riável possa armazenar somente números inteiros.

Geralmente, toda variável está associada a uma posição da memória RAM. Portanto, quando ar-
mazenamos um valor em uma variável, na verdade, estamos armazenando esse valor em algum lugar
da memória RAM. Dessa forma, os identificadores das variáveis são utilizados para acessar a memó-
ria RAM.

numeroDaConta = 4823

numeroDaConta

MEMÓRIA RAM

numeroDaConta

4
8
2
3

MEMÓRIA RAM

Figura 2.1: Processo de atribuição do valor numérico 4823 à variável numeroDaConta

A Figura 2.1 ilustra o processo de armazenamento do valor 4823 na variável numeroDaConta. Essa
variável está associada à terceira posição da memória RAM. Lembre-se que esse valor é armazenado
em formato binário.

2.2 Declarando e Inicializando Variáveis

Toda variável deve ser declarada. Na declaração de uma variável é necessário informar um tipo e
um nome para essa variável. No exemplo abaixo, três variáveis foram declaradas: a variável chamada
numeroDaConta do tipo int, a variável saldo do tipo double e a variável contaAtiva do tipo boolean.

1 int numeroDaConta;
2 double saldo;

www.facebook.com/k19treinamentos 45

VARIÁVEIS 46

3 boolean contaAtiva;

Código Java 2.1: Declaração de variáveis

Duas ou mais variáveis de um mesmo tipo podem ser declaradas na mesma instrução. O tipo
deve ser definido apenas uma vez e os nomes das variáveis separados por vírgula. No exemplo abaixo,
três variáveis do tipo double foram declaradas: saldo, limite e taxa.

1 double saldo , limite , taxa;

Código Java 2.2: Declaração de duas ou mais variáveis na mesma instrução

Mais Sobre

Em Java, devemos informar, no código fonte, o tipo das variáveis. Por isso, essa lingua-
gem é considerada estaticamente tipada.

Toda variável deve ser inicializada antes de sua utilização. O processo de inicialização consiste
em atribuir a uma variável o seu primeiro valor. No exemplo abaixo, a variável numeroDaConta foi de-
clarada na linha 1 e inicializada com o valor 3466 na linha 2.

1 int numeroDaConta;
2 numeroDaConta = 3466;

Código Java 2.3: Declaração e inicialização de uma variável

Também é possível declarar e inicializar uma variável em apenas uma linha. No exemplo abaixo,
a variável numeroDaConta foi declarada e inicializada com o valor 3466 na linha 1.

1 int numeroDaConta = 3466;

Código Java 2.4: Declaração e inicialização de uma variável

Pare para pensar...

O que aconteceria se o compilador Java permitisse utilizar uma variável não inicializada?

Um programador da linguagem C (não C#), responderia essa pergunta facilmente, pois em C é
possível utilizar uma variável sem inicializá-la. Quando uma variável é declarada, um espaço
na memória RAM do computador é reservado para essa variável. Esse espaço pode ter sido
utilizado, anteriormente, por outro programa e pode conter dados antigos. Dessa forma, se uma
variável não inicializada for utilizada, o valor antigo armazenado no espaço de memória RAM
associado a essa variável será utilizado.

Muitos programadores C esquecem de inicializar suas variáveis com valores adequados. Isso
provoca muitos erros de lógica. Em Java, esse problema não existe pois as variáveis devem sem-
pre ser inicializadas antes de serem utilizadas.

46 www.k19.com.br

47 VARIÁVEIS

2.3 Exibindo os Valores das Variáveis

O valor de uma variável pode ser exibido na saída padrão. Na primeira linha do exemplo abaixo,
a variável numero foi declarada e inicializada com o valor 10. Depois, o valor dessa variável foi exibido
na tela através do método println.

1 int numero = 10;
2
3 System.out.println(numero);

Pare para pensar...

Qual é a diferença entre as duas linhas a seguir?

1 System.out.println(numero);
2 System.out.println("numero");

Na primeira linha, o valor armazenado na variável numero é exibido na saída padrão. Na segunda
linha, o texto “numero” é exibido na saída padrão.

2.4 Copiando Valores

Uma variável pode receber uma cópia do valor armazenado em outra variável. Na primeira linha
do exemplo abaixo, a variável a do tipo int foi declarada e inicializada com o valor 1. Na sequência, a
variável b também do tipo int foi inicializada com uma cópia do valor armazenado na variável a.

1 int a = 1;
2
3 int b = a;

Alterar o valor armazenado em uma variável não afeta o valor armazenado em uma outra variá-
vel. No exemplo abaixo, a variável a foi inicializada com o valor 1 e a variável b foi inicializada com
uma cópia do valor armazenado na variável a. Depois, os valores armazenados nessas duas variáveis
foram modificados. A variável a recebeu o valor 2 e a variável b recebeu o valor 3. Lembre-se que al-
terar o valor da variável a não afeta o valor armazenado na variável b e vice-versa. Portanto, ao exibir
os valores armazenados nessas variáveis, os números 2 e 3 serão apresentados na saída padrão.

1 int a = 1;
2
3 int b = a;
4
5 a = 2;
6
7 b = 3;
8
9 System.out.println(a); // exibe o valor 2
10
11 System.out.println(b); // exibe o valor 3

www.facebook.com/k19treinamentos 47

VARIÁVEIS 48

Simulação

Para ilustrar a cópia de valores de variáveis, simularemos a execução de um programa em Java.

1 Ao executar a classe Variavel, a execução é iniciada na primeira linha do método main. Assim, a
execução começa na linha 3 do código abaixo. A instrução dessa linha declara a variável a do tipo int

e a inicializa com o valor 2.

1 class Variavel {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = a;
5 System.out.println(a);
6 System.out.println(b);
7 }
8 }

a = 2

2 Em seguida, a linha 4 é executada. Nessa linha, é declarada a variável b do tipo int e seu valor é
inicializado com o valor armazenado na variável a.

1 class Variavel {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = a;
5 System.out.println(a);
6 System.out.println(b);
7 }
8 }

a = 2

b = 2

3 Seguindo o fluxo de execução, a linha 5 é executada. A instrução dessa linha exibe na saída
padrão o valor armazenado na variável a. Assim, o número 2 é exibido na saída padrão.

1 class Variavel {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = a;
5 System.out.println(a);
6 System.out.println(b);
7 }
8 }

a = 2

b = 2

2

4 Em seguida, a linha 6 é executada. A instrução dessa linha exibe na saída padrão o valor arma-
zenado na variável b.

48 www.k19.com.br

49 VARIÁVEIS

1 class Variavel {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = a;
5 System.out.println(a);
6 System.out.println(b);
7 }
8 }

a = 2

b = 2

2
2

2.5 Tipos Primitivos

A linguagem Java possui oito tipos primitivos. Esses tipos são os mais utilizados e servem como
base para a criação de outros tipos. Os tipos primitivos da linguagem Java são apresentados na Ta-
bela 2.1.

Tipo Descrição Espaço ocupado
byte Valor inteiro entre -128 e 127 1 byte

short Valor inteiro entre -32768 e 32767 2 bytes

int Valor inteiro entre -2147483648 e 2147483647 4 bytes

long Valor inteiro entre -9223372036854775808 e 9223372036854775807 8 bytes

float Alguns valores reais entre −(2−2−23)×2127 e (2−2−23)×2127 4 bytes

double Alguns valores reais entre −(2−2−52)×21023 e (2−2−52)×21023 8 bytes

boolean O valor true (verdadeiro) ou o valor false (falso) 1 bit

char Valor inteiro entre 0 e 65535 2 bytes

Tabela 2.1: Tipos primitivos da linguagem Java

Chamaremos os tipos primitivos byte, short, char, int, long, float e double de tipos primitivos nu-
méricos. Os tipos byte, short, char, int e long serão chamados de tipos primitivos inteiros. Já os tipos
float e double serão chamados de tipos primitivos reais.

Mais Sobre

O espaço necessário para armazenar uma variável do tipo boolean é 1 bit. Contudo,
dependendo da plataforma, o espaço ocupado pode ser maior.

Mais Sobre

O tipo float e o tipo double aceitam também os valores ±Infinity, ±0 e NaN (Not
a Number). Os valores ±Infinity são representados pelas constantes Float.NEGATIVE_INFINITY,
Float.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY e Double.POSITIVE_INFINITY. O valor NaN é repre-
sentado pelas constantes Float.NaN e Double.NaN. Veremos mais sobre esses valores adiante.

www.facebook.com/k19treinamentos 49

VARIÁVEIS 50

BigInteger e BigDecimal

Para armazenar números inteiros que extrapolam os intervalos de valores dos tipos primitivos
numéricos, podemos utilizar o tipo BigInteger.

http://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

Para armazenar números reais que extrapolam os intervalos de valores dos tipos primitivos nu-
méricos ou que exijam mais precisão, podemos utilizar o tipo BigDecimal.

http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Qualquer número aceito por um tipo primitivo inteiro pode ser armazenado em uma variável do
tipo BigInteger. Além desses valores, o tipo BigInteger é capaz de armazenar muitos outros. Assim,
alguém poderia argumentar que optar por uma variável do tipo BigInteger é sempre a melhor escolha.

No entanto, o uso de BigInteger tem algumas desvantagens em relação ao uso dos tipos primitivos
inteiros. Uma delas é que uma variável do tipo BigInteger ocupa mais espaço. Além disso, operações
envolvendo os valores armazenados em variáveis do tipo BigInteger são consideravelmente mais len-
tas do que as operações envolvendo os tipos primitivos inteiros. A mesma comparação é válida entre
o tipo BigDecimal e os tipos primitivos reais.

KB 0-X
8

POKET 801

MADE B
Y K

19

Analogia

Escolher entre os tipos numéricos primitivos e os tipos BigInteger e BigDecimal é se-
melhante a optar pelo uso de um carro ou de um caminhão. De fato, o caminhão é capaz de
transportar tudo o que um carro é capaz de transportar e muito mais. Por outro lado, estaci-
onar um caminhão em um shopping, por exemplo, é bem mais complicado do que estacionar
um carro. Além disso, o gasto de combustível do caminhão será provavelmente maior do que o
gasto do carro.

Valores mínimos e máximos

Os programadores não precisam decorar com exatidão os valores mínimos e máximos aceitos
por cada tipo primitivo numérico. Na linguagem Java, esses valores podem ser acessados através das
constantes apresentadas na Tabela 2.2.

Tipo Mínimo Máximo
byte Byte.MIN_VALUE Byte.MAX_VALUE
short Short.MIN_VALUE Short.MAX_VALUE
int Integer.MIN_VALUE Integer.MAX_VALUE
long Long.MIN_VALUE Long.MAX_VALUE
float Float.MIN_VALUE Float.MAX_VALUE
double Double.MIN_VALUE Double.MAX_VALUE
char Character.MIN_VALUE Character.MAX_VALUE

Tabela 2.2: Constantes para os valores mínimos e máximos dos tipos primitivos numéricos

Por exemplo, para exibir o maior valor que uma variável do tipo int pode armazenar, podemos
utilizar o seguinte código.

50 www.k19.com.br

http://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
http://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

51 VARIÁVEIS

1 System.out.println (2147483647);

Contudo, alguém que venha a ler esse código pode não reconhecer esse número como sendo o
maior valor do tipo int. Uma situação como essa pode comprometer o entendimento do código por
parte do leitor. Para melhorar a legibilidade do código, podemos utilizar a constante Integer.MAX_VALUE.

1 System.out.println(Integer.MAX_VALUE);

Importante

As constantes apresentadas na Tabela 2.2 para os valores mínimos dos tipos byte, short,
int e long armazenam os números -128, -32768, -2147483648 e -9223372036854775808, respec-
tivamente. Ou seja, são armazenados os menores valores aceitos por esses tipos.

Por outro lado, as constantes para os valores mínimos dos tipos float e double armazenam os
números 2−149 e 2−1074, respectivamente, ou seja, os menores valores positivos que esses tipos
aceitam.

Números inteiros

Números inteiros podem ser armazenados em variáveis dos tipos byte, short, int ou long. Basi-
camente, para escolher o tipo mais apropriado, devemos considerar a grandeza dos números que
desejamos armazenar.

Por exemplo, considere a numeração dos andares de um prédio. Nesse prédio, há 3 subsolos
numerados com -1, -2 e -3, o térreo é numerado com 0 e os outros 20 andares com os números
de 1 a 20. Precisamos armazenar o número de um andar qualquer desse prédio. De acordo com a
Tabela 2.1, o tipo byte aceita valores entre -128 e 127. Portanto, o tipo byte é uma escolha adequada
para a nossa variável.

Atualmente, os motores dos automóveis comuns não ultrapassam 10.000 RPM (rotações por mi-
nuto). Dessa forma, é possível armazenar a rotação máxima de um automóvel em uma variável do
tipo short.

No livro O cérebro feminino, a neuropsiquiatra Louann Brizendine afirmou que, em média, uma
mulher fala 20 mil palavras por dia. Vamos considerar que, em um dia atípico, uma mulher pode falar
cerca de 40 mil palavras. Dessa forma, para armazenar a quantidade de palavras que uma mulher
fala em um dia, seria razoável utilizar uma variável do tipo int.

Atualmente, a população mundial é de aproximadamente 7 bilhões de pessoas. Para armazenar
esse valor, devemos utilizar uma variável do tipo long.

Na Tabela 2.1, você pode verificar que a quantidade de espaço ocupado por uma variável de-
pende do seu tipo. Para diminuir a quantidade de memória RAM utilizada, podemos priorizar o uso
dos tipos byte, short, int e long nessa ordem.

www.facebook.com/k19treinamentos 51

VARIÁVEIS 52

Números reais

Números reais podem ser armazenados em variáveis dos tipos float e double. Para escolher o
tipo mais apropriado, devemos considerar a grandeza e a precisão dos números que desejamos ar-
mazenar. O tipo double permite armazenar valores de maior grandeza e de maior precisão quando
comparado ao tipo float.

O menor valor que pode ser representado pelo tipo double é −(2− 2−52)× 21023 e o maior é 2−
2−52)×21023. A quantidade de valores reais entre esses dois números é infinita. O tipo double, contudo,
permite apenas a representação de uma quantidade finita de valores nesse intervalo.

Por exemplo, o número 1 pode ser representado em double. O próximo número depois do 1 que
pode ser representado em double é 1.0000000000000002220446049250313080847263336181640625
(que é igual a 1 + 2−52). Depois desse número, o próximo número que pode ser representado é
1.000000000000000444089209850062616169452667236328125 (que é igual a 1+2−51).

De maneira geral, um valor que não pode ser representado em double é substituído pelo valor
mais próximo que pode ser representado. Por exemplo, o número 1.0000000000000003 não pode
ser representado em double. Assim, esse número é substituído pelo valor double mais próximo, que é
1.0000000000000002220446049250313080847263336181640625.

O tipo float funciona de forma análoga ao tipo double e é capaz de armazenar alguns valores entre
−(2−2−23)×2127 e (2−2−23)×2127.

O valor especial NaN (Not-a-Number) representa o resultado de algumas operações inválidas
envolvendo valores do tipo float ou do tipo double. O valor especial Infinity representa o infinito. O
resultado de algumas operações envolvendo valores do tipo float ou do tipo double pode ser +Infinity
ou −Infinity.

Armadilha

Quando um número possui muitas casas decimais, o método println não exibe todas
elas. No exemplo abaixo, ao tentar exibir o valor 1.0000000000000003, o método println exibe o
valor 1.0000000000000002.

1 System.out.println (1.0000000000000003); // exibe 1.0000000000000002

Por quê o valor 1.0000000000000002 é exibido ao invés do valor 1.0000000000000003?

Isso ocorre por dois motivos. Primeiramente, o número 1.0000000000000003 não pode ser repre-
sentado em double. Por isso, esse número é substituído pelo número mais próximo que pode ser
representado em double, que é 1.0000000000000002220446049250313080847263336181640625.
O valor arredondado é passado como argumento para o método println. Esse método omitirá
algumas casas decimais ao exibir esse número.

Curiosidade

No dia 25 de Fevereiro de 1991, em Dhahran, na Arábia Saudita, durante a Guerra do
Golfo, o sistema antimíssil americano chamado Patriot falhou e não conseguiu interceptar um
míssil iraquiano. Esse míssil atingiu o seu alvo, um alojamento americano. No total, 28 soldados

52 www.k19.com.br

53 VARIÁVEIS

americanos morreram e outras 100 pessoas ficaram feridas.

A falha ocorreu devido a um problema de precisão numérica no software que controlava o sis-
tema Patriot. O sistema Patriot possui um relógio interno que armazena em décimos de se-
gundos o tempo de funcionamento do equipamento desde a sua última inicialização. O soft-
ware multiplicava esse valor por 0.1 para obter o tempo de funcionamento do equipamento em
segundos. O resultado dessa multiplicação era utilizado para calcular a trajetória dos mísseis
que deveriam ser interceptados.

Contudo, o formato numérico utilizado pelo software para armazenar o valor 0.1 é o Ponto Fixo
de 24 bits. Esse valor não pode ser representado nesse formato. Sendo assim, o software reali-
zava os cálculos com o valor mais próximo que pode ser representado em Ponto Fixo de 24 bits.
Para ser mais específico, o software realizava os cálculos com o valor 0.099999904632568359375.

Depois de 100 horas de funcionamento, essa falta de precisão causava um desvio de aproxima-
damente 687 metros nos cálculos das trajetórias do mísseis. Isso causou a falha do dia 25 de
Fevereiro de 1991.

Oficiais das forças armadas americanas disseram que uma versão corrigida do software foi fi-
nalizada no dia 16 de Fevereiro de 1991. Mas, essa versão só chegou em Dhahran no dia 26 de
Fevereiro de 1991. Ou seja, um dia depois da falha fatal.

Verdadeiro ou falso

Variáveis do tipo boolean podem armazenar o valor true (verdadeiro) ou o valor false (falso). Não
podemos armazenar números em variáveis do tipo boolean.

Caracteres

Tecnicamente, uma variável do tipo char armazena um número inteiro entre 0 e 65.535. Contudo,
o valor armazenado em um variável do tipo char representa o código de um caractere de acordo com
a codificação UTF-16 do padrão Unicode (http://www.unicode.org/). De forma abstrata, podemos
dizer que uma variável do tipo char armazena um caractere.

2.6 Tipos Numéricos Não Primitivos

Para todo tipo primitivo, há um tipo não primitivo correspondente. Em algumas situações, para
aproveitar alguns recursos da plataforma Java, a utilização desses tipos não primitivos é necessária.
Por outro lado, a manipulação dos valores primitivos é mais rápida do que a manipulação dos valores
correspondentes não primitivos.

www.facebook.com/k19treinamentos 53

http://www.unicode.org/

VARIÁVEIS 54

Primitivo Wrapper Class
byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

Tabela 2.3: Wrapper Classes para os tipos primitivos

Importante

Todo tipo não primitivo também aceita o valor null. Esse valor representa o vazio.

2.7 String

Na linguagem Java, o tipo String é um dos mais importantes e mais utilizados. O tipo String é
usado para armazenar texto (sequência de caracteres). No exemplo abaixo, a variável texto do tipo
String foi associada à sequência de caracteres “K19 Treinamentos”.

1 String texto = "K19 Treinamentos";

Código Java 2.16: Utilizando o tipo String

Qualquer caractere definido na codificação UTF-16 do padrão Unicode pode ser utilizado para
formar uma string.

O espaço utilizado por uma string depende da quantidade de caracteres que ela possui. Cada
caractere ocupa 16 bits. Portanto, a string “K19 Treinamentos”, que possui 16 caracteres (o caractere
espaço também deve ser contabilizado), ocupa 256 bits.

Como String é um tipo não primitivo, podemos armazenar o valor null em uma variável do tipo
String.

2.8 Data e Hora

A linguagem Java possui tipos específicos para armazenar data e hora. Em Java, é muito comum
utilizarmos o tipo Calendar.

1 java.util.Calendar exatamenteAgora = java.util.Calendar.getInstance ();

Código Java 2.17: Data e hora atuais - Calendar

No código acima, a data e hora atuais do computador são associadas à variável exatamenteAgora.
Também podemos definir datas e horas específicas.

54 www.k19.com.br

55 VARIÁVEIS

java.util.Calendar c = new java.util.GregorianCalendar(1982 ,

 11 ,

 12 ,

 10 ,

 5 ,

 30)

Ano

Dia (1 ~ 31)

Minuto (0 ~ 59)

Mês (0 ~ 11)

Hora (0 ~ 23)

Segundo (0 ~ 59)

Figura 2.2: Data e hora específicas - Calendar

No exemplo acima, o primeiro parâmetro define o ano; o segundo o mês; o terceiro o dia; o
quarto a hora; o quinto os minutos; e o sexto os segundos. O mês é definido da seguinte forma: 0 é
janeiro, 1 é fevereiro, 2 é março e assim por diante. Dessa forma, a data “12 de Dezembro de 1982” e
hora “10:05:30” foram associadas à variável c.

2.9 Valores Literais

Os valores inseridos diretamente no código fonte são chamados de valores literais.

Null

Considere um programa que utiliza uma variável do tipo Double para armazenar a variação do
Dólar em relação ao Real. Essa variável deve ser atualizada diariamente.

1 Double variacao;

No dia 30 de Abril de 2014, a variação foi de −0,139%. Então, nesse dia, o valor −0.139 foi arma-
zenado na variável variacao.

1 variacao = -0.139;

No dia seguinte, 1 de Maio de 2014, devido ao feriado internacional do dia do trabalho, o mercado
financeiro não funcionou. Dessa forma, a cotação do Dólar em relação ao Real não sofreu alteração.
Nesse dia, qual valor deveria ser armazenado na variável variacao?

Provavelmente, nesse caso, o mais intuitivo seria utilizar o valor 0. Contudo, a utilização desse
valor gera uma ambiguidade. A variável variacao armazenaria o valor 0 quando o mercado financeiro
não funciona, ou seja, nos sábados, domingos, feriados e datas extraordinárias. Mas, também arma-
zenaria o valor 0 quando as operações financeiras realizadas em um determinado dia não alteram a
cotação do Dólar em relação ao Real. Se o programa precisa diferenciar essas duas situações, o valor
0 não pode ser utilizado para esses dois casos.

Para resolver esse problema, nos dias em que o mercado financeiro não funciona, o valor null

poderia ser armazenado na variável variacao. O null é um valor especial que representa o vazio.

1 variacao = null;

www.facebook.com/k19treinamentos 55

VARIÁVEIS 56

Importante

As variáveis de tipos primitivos não aceitam o valor null.

Pare para pensar...

Como String é um tipo não primitivo, as variáveis do tipo String aceitam o valor null. No
exemplo abaixo, o valor null foi armazenado na variável nome que é do tipo String.

1 String nome = null;

Se a palavra chave null for definida dentro de aspas dupla, a variável nome seria associada à
sequência de caracteres “null’ e não armazenaria o valor null.

1 String nome = "null";

Booleanos

O valor “verdadeiro” é representado pelo valor literal true e o valor “falso” pelo valor literal false.

1 boolean a = true;
2
3 boolean b = false;

Código Java 2.23: Utilizando valores literais booleanos

Inteiros

Números inteiros podem ser escritos nos formatos binário, octal, decimal e hexadecimal. A re-
presentação de um número em cada um desses formatos é uma sequência composta por um ou
mais dígitos. No formato decimal, são usados os dígitos de 0 a 9. Já no formato binário, são utili-
zados apenas os dígitos 0 e 1. No formato octal, são usados os dígitos de 0 a 7. Por fim, no formato
hexadecimal, são usados os dígitos de 0 a 9 e as letras de A a F. A letra A corresponde ao valor 10, a
letra B corresponde ao valor 11 e assim sucessivamente. A Tabela 2.4 apresenta os números inteiros
de 0 a 21 representados em cada um desses formatos.

56 www.k19.com.br

57 VARIÁVEIS

Decimal Binário Octal Hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A

Decimal Binário Octal Hexadecimal
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15

Tabela 2.4: Números de 0 a 21 representados em diversos formatos

Em Java, valores literais inteiros podem ser escritos no código fonte em qualquer um desses for-
matos. Mas como podemos observar na Tabela 2.4, o número 2 em formato binário tem a mesma
representação que o número 10 em formato decimal. Para diferenciá-los, a linguagem Java define
algumas regras.

• Para utilizar o formato binário, devemos acrescentar o prefixo 0b ou o prefixo 0B.

• Para usar o formato octal, devemos acrescentar o prefixo 0.

• Para utilizar o formato hexadecimal, devemos acrescentar o prefixo 0x ou o prefixo 0X.

• Qualquer outra sequência formada por dígitos de 0 a 9 estará no formato decimal.

No código abaixo, o número 19 é atribuído a variáveis do tipo int utilizando os formatos binário,
octal, decimal e hexadecimal.

1 // 19 em binário
2 int a = 0b10011;
3
4 // 19 em octal
5 int b = 023;
6
7 // 19 em decimal
8 int c = 19;
9
10 // 19 em hexadecimal
11 int d = 0x13;

Código Java 2.24: Número 19 nos formatos binário, octal, decimal e hexadecimal

Por padrão, os valores literais inteiros são considerados valores do tipo int. Para definir um valor
literal inteiro do tipo long, devemos utilizar o sufixo L (éle maiúsculo) ou l (éle minúsculo). A uti-
lização do sufixo l (éle minúsculo) não é recomendada pois, visualmente, esse caractere pode ficar
muito parecido com o caractere 1 (um).

Como vimos, variáveis do tipo int não armazenam valores maiores do que 2.147.483.647. Então,
considere o valor inteiro 2.147.483.648. Esse valor não pode ser armazenado em variáveis do tipo
int pois ultrapassa o limite de 2.147.483.647.

Por outro lado, o valor 2.147.483.648 pode ser armazenado em variáveis do tipo long, já que esse
tipo de variável aceita valores até 9.223.372.036.854.775.807.

www.facebook.com/k19treinamentos 57

VARIÁVEIS 58

No código abaixo, há uma tentativa de atribuir o valor 2.147.483.648 à variável a. Note que nem o
sufixo L e nem o sufixo l foi acrescentado ao número. Assim, mesmo a variável a sendo do tipo long,
esse código gera um erro de compilação.

1 // erro de compilação
2 long a = 2147483648;

Código Java 2.25: Erro de compilação

Para resolver esse problema, devemos utilizar o sufixo L ou o sufixo l, como no código abaixo.

1 // valor literal inteiro do tipo long
2 long a = 2147483648L;
3
4 // valor literal inteiro do tipo long
5 long b = 2147483648l;

Código Java 2.26: Utilizando os sufixos L e l

Reais

Valores literais reais são definidos com o separador de casas decimais “.” (ponto). Veja alguns
exemplos:

1 double a = 19.19;
2
3 double b = 0.19;
4
5 double c = .19;

Código Java 2.27: Valores literais reais

Por padrão, independentemente da grandeza do número, os valores literais reais são tratados
como double. Por exemplo, considere o valor 19.09. Esse valor poderia ser tratado como float ou
double. Contudo, por padrão, ele será tratado como double. Dessa forma, o código a seguir gera um
erro de compilação.

1 float a = 19.09;

Código Java 2.28: Erro de compilação

Para resolver esse problema, devemos utilizar o sufixo F (éfe maiúsculo) ou f (éfe minúsculo). Ao
utilizar um desses sufixos, indicamos ao compilador que o valor literal real deve ser tratado como
float.

1 float a = 19.09F;
2
3 float b = 19.09f;

Código Java 2.29: Utilizando o sufixo F e f

Para indicar que um valor literal é do tipo double, podemos utilizar o sufixo D (dê maiúsculo) ou
d (dê minúsculo). Esses sufixos são redundantes para valores literais reais pois, por padrão, esses
valores já são do tipo double.

58 www.k19.com.br

59 VARIÁVEIS

Também podemos definir valores literais reais na forma exponencial. No exemplo abaixo, a va-
riável a foi inicializada com o valor “1.74e3”. Esse valor é o resultado da multiplicação do número à
esquerda do caractere e (é minúsculo) por 10 elevado ao número à direita do caractere e (é minús-
culo). Em outras palavras, esse valor é igual a 1.74×103, ou seja, igual a 1740.

1 double a = 1.74e3; // 1740 na forma exponencial

Código Java 2.30: Forma exponencial

O caractere E (é maiúsculo) pode ser utilizado no lugar do caractere e (é minúsculo).

1 double a = 1.74E3; // 1740 na forma exponencial

Código Java 2.31: Forma exponencial

Caracteres

Caracteres literais são definidos dentro de aspas simples. No exemplo abaixo, a variável a foi
inicializada com o código numérico do caractere K.

1 char a = ’K’;

Código Java 2.32: Caracteres literais

O código do caractere K é 75. Dessa forma, as duas inicializações do exemplo abaixo são equi-
valentes. Para não ter de decorar o código de cada caractere, provavelmente, você vai optar pela
inicialização com aspas simples.

1 char a = ’K’;
2
3 char b = 75;

Código Java 2.33: Caracteres literais

Importante

Apenas um caractere pode ser definido dentro de aspas simples.

Importante

Para definir os caracteres \, ’ e " (barra invertida, aspas simples e aspas duplas), deve-
mos acrescentar uma \ (barra invertida) à frente desses caracteres. Assim, devemos utilizar as
sequências de escape \\, \’ e \". Veja o exemplo a seguir.

1 char a = ’\\’;
2
3 char b = ’\’’;
4
5 char c = ’\"’;

A quantidade de caracteres definidos pela codificação UTF-16 do padrão Unicode é muito maior
do que a quantidade de teclas do seu teclado. Dessa forma, você não pode digitar a maior parte dos
caracteres aceitos pela linguagem Java.

www.facebook.com/k19treinamentos 59

VARIÁVEIS 60

Para definir caracteres que não estão associados às teclas do seu teclado, você pode utilizar o
código de cada caractere. Por exemplo, para definir o caractereΩ (ômega), podemos utilizar o código
937.

Na segunda inicialização do exemplo abaixo, utilizamos o valor \u03A9 dentro de aspas simples.
O número à direita do caractere u (u minúsculo) é o código do caractere desejado em notação hexa-
decimal com 4 dígitos.

1 char a = 937;
2
3 char b = ’\u03A9’; // 937 em notação hexadecimal com 4 dígitos

Código Java 2.35: Utilizando o código dos caracteres

Mais Sobre

De acordo com a especificação da linguagem Java, os caracteres literais podem ser de-
finidos em notação octal para oferecer compatibilidade com a linguagem C. Contudo, nessa
notação, somente os caracteres correspondentes aos códigos do intervalo [0,255] podem ser
definidos.

1 char a = ’\101’; // 65 em notação octal

Código Java 2.36: Utilizando a notação octal

Como vimos, podemos definir um caractere de diversas formas. Veja no exemplo abaixo algumas
formas de definir o caractere A.

1 char a1 = ’A’;
2
3 char a2 = 65; // código do caractere A em decimal
4
5 char a3 = ’\u0041’; // código do caractere A em notação hexadecimal
6
7 char a4 = ’\101’; // código do caractere A em notação octal
8
9 char a5 = 0B1000001; // código do caractere A em formato binário
10
11 char a6 = 0101; // código do caractere A em formato octal
12
13 char a7 = 0X41; // código do caractere A em formato hexadecimal

Código Java 2.37: Diferentes formas para definir o caractere A

Strings

Strings literais são definidas dentro de aspas duplas. No exemplo abaixo, a variável a foi associada
à sequência de caracteres “K19 Treinamentos”.

1 String a = "K19 Treinamentos";

Código Java 2.38: Strings literais

Para simplificar, uma string literal é uma sequência de caracteres literais dentro de aspas duplas.

60 www.k19.com.br

61 VARIÁVEIS

Importante

Para utilizar os caracteres \ e " (barra invertida e aspas duplas) dentro de uma string,
devemos usar as sequências de escape \\ e \", respectivamente.

No exemplo abaixo, ocorre um erro de compilação.

1 String a = "C:\k19\rafael\cosentino";

Código Java 2.39: Erro de compilação

Para solucionar esse problema, devemos utilizar a sequência de escape \\.

1 String a = "C:\\k19\\ rafael \\ cosentino";

Código Java 2.40: Utilizando a sequência de escape \\

Legibilidade

No código abaixo, a variável numero foi inicializada com determinado valor.

1 long numero = 4000000000000L;

Qual valor é esse? Observe que há certa dificuldade para descobrir o valor desse número. Para
melhorar a legibilidade dos valores literais inteiros ou reais, podemos separar os dígitos utilizando o
caractere _ (underscore). Assim, o código acima pode ser escrito da seguinte forma.

1 long numero = 4_000_000_000_000L;

Código Java 2.42: Utilizando o caractere _

Os dois códigos acima são equivalentes, mas o último é mais legível, facilitando o entendimento
por parte do leitor.

Há algumas regras para o uso desse caractere. O underscore não pode ser colocado antes do
primeiro dígito e nem após o último dígito de um número inteiro ou real. Para números do tipo long,
o _ não pode ser colocado ao lado do L ou do l. Além disso, para valores reais, o caractere underscore
não pode ser colocado ao lado do . e nem ao lado do E ou E. No código abaixo, mostramos alguns
usos indevidos de underscore.

1 int x1 = 1_000_000_000_;
2 long x2 = _4_000_000_000_000L;
3 long x3 = 4_000_000_000_000_L;
4 double x4 = _544_435_765 .34;
5 double x5 = 544 _435_765_ .34;
6 double x6 = 82.3 E_4;

Código Java 2.43: Erro de compilação ao usar o caractere _ incorretamente

www.facebook.com/k19treinamentos 61

VARIÁVEIS 62

É importante observar que os caracteres _ não aparecem na tela quando um número nesse for-
mato é exibido.

1 System.out.println (4 _000_000_000_000L); // exibe 4000000000000

Código Java 2.44: Os caracteres _ não são exibidos na tela

2.10 O Modificador final

Podemos utilizar o modificador final na declaração de uma variável. No exemplo abaixo, a va-
riável a do tipo int foi declarada com o modificador final. Depois de inicializar essa variável, não
poderemos mais alterar o seu valor devido à utilização do modificador final.

1 final int a;

Código Java 2.45: Utilizando o modificador final

Por exemplo, no código abaixo, a variável a (que é final) foi inicializada com o valor 10. Depois
dessa inicialização, na tentativa de trocar o valor dessa variável, um erro de compilação é gerado.

1 final int a = 10;
2
3 a = 5; // erro de compilação

Código Java 2.46: Tentando alterar o valor de uma variável final

A inicialização de uma variável final não precisa ser realizada junto com a sua declaração. En-
quanto uma variável final não for inicializada, ela é denominada blank final.

1 final int a;
2
3 a = 10;

Código Java 2.47: Declarando e inicializando uma variável final em linha separadas

2.11 Números Aleatórios

Para realizar mostrar alguns exemplos, utilizaremos números aleatórios. Em Java, esses números
podem ser gerados facilmente. No exemplo a seguir, utilizamos a classe Math e o método random para
gerar números aleatórios do tipo double maiores ou iguais a 0 e menores do que 1.

1 double numero = Math.random ();

Código Java 2.48: Gerando números aleatórios

Podemos adaptar o intervalo dos números gerados com algumas operações matemáticas. Su-
ponha que você queira gerar aleatoriamente um número que seja maior ou igual a um certo valor
mínimo e menor do que um certo valor máximo. O código abaixo exemplifica como essa tarefa pode
ser feita.

1 double minimo = -5.0;

62 www.k19.com.br

63 VARIÁVEIS

2 double maximo = 17.3;
3
4 // minimo <= numero < maximo
5 double numero = minimo + Math.random () * (maximo - minimo);

Código Java 2.49: Gerando números aleatórios num intervalo específico

Simulação

Vamos simular a execução de um programa em Java que gera um número aleatório através do
método Math.random e o exibe na saída padrão.

1 A execução da classe NumeroAleatorio é iniciada na primeira linha do método main. Assim, a
execução começa na linha 3 do código abaixo. A instrução dessa linha declara a variável a do tipo
double e a inicializa com o valor devolvido pelo método Math.random.

1 class NumeroAleatorio {
2 public static void main(String [] args) {
3 double a = Math.random ();
4 System.out.println(a);
5 }
6 }

a = 0.87

2 Em seguida, a linha 4 é executada. A instrução presente nessa linha exibe o valor da variável a na
saída padrão.

1 class NumeroAleatorio {
2 public static void main(String [] args) {
3 double a = Math.random ();
4 System.out.println(a);
5 }
6 }

a = 0.87

0.87

2.12 Convenções de Nomenclatura

Os nomes das variáveis são fundamentais para o entendimento do código fonte. Considere o
exemplo a seguir.

1 int j;
2 int f;
3 int m;

Você consegue deduzir quais dados serão armazenados nas variáveis j, f e m? Provavelmente, não.
Vamos melhorar um pouco os nomes dessas variáveis.

www.facebook.com/k19treinamentos 63

VARIÁVEIS 64

1 int jan;
2 int fev;
3 int mar;

Agora, talvez, você tenha uma vaga ideia. Vamos melhorar mais um pouco os nomes dessas
variáveis.

1 int janeiro;
2 int fevereiro;
3 int marco;

Agora sim! Você já sabe para que servem essas variáveis? Se você parar para pensar ainda não
sabe muita coisa sobre elas. Então, é importante melhorar mais uma vez o nome dessas variáveis.

1 int numeroDePedidosEmJaneiro;
2 int numeroDePedidosEmFevereiro;
3 int numeroDePedidosEmMarco;

Finalmente, os nomes das variáveis conseguem expressar melhor a intenção delas. Consequen-
temente, a leitura e o entendimento do código fonte seria mais fácil.

Geralmente, bons nomes de variáveis são compostos por várias palavras como no exemplo a
seguir.

1 int numeroDeCandidatosAprovados;

Quando o nome de uma variável é composto, é fundamental adotar alguma convenção para
identificar o início e o término das palavras. A separação natural das palavras na língua portuguesa
são os espaços. Contudo, os nomes das variáveis em Java não podem possuir espaços. Não adotar
uma convenção de nomenclatura para identificar o início e o termino das palavras é como escrever
um texto em português sem espaços entre as palavras. Em alguns casos, o leitor não saberia como
separar as palavras. Considere o exemplo abaixo.

salamesadia

O que está escrito no texto acima? A resposta depende da divisão das palavras. Você pode ler
como “sala mesa dia” ou “salame sadia”. Dessa forma, fica clara a necessidade de deixar visualmente
explícita a divisão das palavras.

Em algumas linguagens de programação, delimitadores são utilizados para separar as palavras
que formam o nome de uma variável.

numero_de_candidatos_aprovados;
numero-de-candidatos-aprovados;

Em outras linguagens de programação, letras maiúsculas e minúsculas são utilizadas para sepa-
rar as palavras.

NumeroDeCandidatosAprovados;

64 www.k19.com.br

65 VARIÁVEIS

numeroDeCandidatosAprovados;

Em Java, a convenção de nomenclatura adotada para separar as palavras que formam o nome de
uma variável é o Camel Case, que consiste em escrever o nome da variável com a primeira letra de
cada palavra em maiúscula com exceção da primeira letra da primeira palavra.

1 int numeroDaConta; // segue a convenção
2 int NumeroDaConta; // não segue a convenção

Código Java 2.57: Convenção para nomes de variáveis

Também devemos nos lembrar que a linguagem Java é case sensitive. Dessa forma, numeroDaConta
e NumeroDaConta são consideradas variáveis diferentes pelo fato do nome da primeira começar com
letra minúscula e o da segunda com maiúscula.

Importante

Considere um código Java que declara uma variável chamada pontuação. Note o uso
dos caracteres “ç” e “ã” no nome dessa variável. Geralmente, os códigos desses caracteres são
diferentes em cada padrão de codificação. Por exemplo, no UTF-8, o código do caractere “ç” é
50087, enquanto que no ISO-8859-1 é 231.

Suponha que esse código tenha sido salvo em um arquivo que utiliza a codificação UTF-8. Se
ele for aberto em um editor que utiliza a codificação ISO-8859-1, o caractere “ç” não será apre-
sentado corretamente, dificultando a leitura ou a modificação do código fonte.

Para evitar esse tipo de problema, a recomendação é utilizar apenas as letras de A a Z (tanto
maiúsculas quanto minúsculas) e os dígitos de 0 a 9 pois, geralmente, os códigos desses carac-
teres não variam de codificação para codificação.

2.13 Regras de Nomenclatura

A linguagem Java possui regras técnicas relacionadas à nomenclatura das variáveis. O nome
(identificador) de uma variável é uma sequência ilimitada de caracteres que:

1. Não pode começar com dígito (números de 0 a 9).

2. Não pode ser igual a uma palavra reservada (ver Tabela 2.5).

3. Pode conter letras (Java letters) e dígitos (Java digits).

4. Pode conter o caractere _ (underscore) e $ (cifrão).

Mais Sobre

Além do _ (underscore) e $ (cifrão), são considerados Java letters todos os caracteres do
padrão Unicode das categorias gerais: Lu (Letter, uppercase), Ll (Letter, lowercase), Lt (Letter,
titlecase), Lm (Letter, modifier), Lo (Letter, other) e Nl (Number, letter).

Dessa forma, o nome de uma variável pode conter caracteres de diversos sistemas de escrita

www.facebook.com/k19treinamentos 65

VARIÁVEIS 66

como o japonês, coreano e chinês, assim como as letras acentuadas do português. Consequen-
temente, os programadores podem definir os nomes das variáveis utilizando a suas línguas na-
tivas.

Contudo, para não ter problema na visualização do código fonte de um programa Java nos diver-
sos editores de texto e sistemas operacionais, a recomendação é utilizar apenas as letras maiús-
culas de A até Z, as letras minúsculas de a até z e os dígitos de 0 a 9.

1 // válido
2 int numeroDaConta;
3
4 // inválido pois o nome de uma variável não pode começar com dígito
5 int 2outraVariavel;
6
7 // inválido pois o nome de uma variável não pode ser igual a uma palavra reservada
8 double double;
9
10 // inválido pois o nome de uma variável não pode conter espaços
11 double saldo da conta;
12
13 // válido
14 int umaVariavelComUmNomeSuperHiperMegaUltraGigante;
15
16 // válido
17 int numeroDaContaCom8Digitos_semPontos;
18
19 // válido
20 int valorDoProdutoEmR$;
21
22 // inválido pois o caractere # não é considerado uma Java letter
23 int #telefone;

Código Java 2.58: Exemplos de nomes de variáveis válidos e inválidos

2.14 Palavras Reservadas

Toda linguagem de programação possui um conjunto de palavras reservadas. Em geral, essas
palavras representam os comandos da linguagem. Na Tabela 2.5, são apresentadas as palavras reser-
vadas da linguagem Java.

abstract continue for new switch
assert default if package synchronized
boolean do goto private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

Tabela 2.5: Palavras reservadas da linguagem Java

66 www.k19.com.br

67 VARIÁVEIS

2.15 Exercícios de Fixação

1 Abra um terminal, entre na pasta dos seus exercícios e crie uma pasta chamada variaveis para
os arquivos desenvolvidos nesse capítulo.

2 Na pasta variaveis, crie um arquivo chamado ExibeIdade.java. Implemente um programa em
Java que declare uma variável do tipo int chamada idade. Essa variável deve ser inicializada com o
valor da sua idade. Por fim, exiba o valor dessa variável na saída padrão.

3 Compile o arquivo ExibeIdade.java e execute o programa.

4 Na pasta variaveis, crie um arquivo chamado ExibeNumeroAleatorio.java. Implemente um pro-
grama em Java que gere um número real aleatório entre 0 e 100. Esse número deve ser armazenado
em uma variável do tipo double chamada numeroAleatorio. Por fim, exiba o valor dessa variável na saída
padrão.

5 Compile o arquivo ExibeNumeroAleatorio.java e execute o programa.

6 Na pasta variaveis, crie um arquivo chamado ExibeNome.java. Implemente um programa em Java
que declare uma variável do tipo String chamada nome. Essa variável deve ser associada à sequência
de caracteres “k19”. Por fim, exiba o valor associado a essa variável na saída padrão.

7 Compile o arquivo ExibeNome.java e execute o programa.

8 Na pasta variaveis, crie um arquivo chamado ExibeValores.java. Implemente um programa em
Java que armazene em variáveis os valores 19, 1571, 100000, 2147483648, 3.14, 3.141592653589793,
true e ‘K’. Utilize sempre o tipo primitivo adequado que ocupe o menor espaço possível. Defina os
nomes que achar mais apropriados para essas variáveis. Por fim, exiba os valores dessas variáveis na
saída padrão.

9 Compile o arquivo ExibeValores.java e execute o programa.

10 Na pasta variaveis, crie um arquivo chamado CopiaValores.java. Implemente um programa em
Java que declare uma variável do tipo float chamada numero. Essa variável deve ser inicializada com
o valor 3.14. Depois, declare outra variável do tipo float chamada numeroCopia. Essa variável deve
ser inicializada com uma cópia do valor armazenado na variável numero. Por fim, exiba os valores
armazenados nessas variáveis na saída padrão.

11 Compile o arquivo CopiaValores.java e execute o programa.

www.facebook.com/k19treinamentos 67

VARIÁVEIS 68

12 Na pasta variaveis, crie um arquivo chamado ValorNull.java. Implemente um programa em Java
que declare uma variável do tipo Double chamada numero. Essa variável deve ser inicializada com o
valor 3.14. Exiba o valor dessa variável na saída padrão. Depois, armazene o valor null na variável
numero. Por fim, exiba novamente o valor dessa variável na saída padrão.

13 Compile o arquivo ValorNull.java e execute o programa.

2.16 Erro: Variáveis com nomes repetidos

Um erro de compilação comum em Java ocorre quando duas ou mais variáveis são declaradas
com nome repetido em um mesmo bloco. No exemplo abaixo, três variáveis com o mesmo nome
foram declaradas.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 10;
4
5 double a = 10.7;
6
7 int a = 5;
8 }
9 }

Código Java 2.59: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :5: error: variable a is already defined in method main(String [])
double a = 10.7;

^
Programa.java :7: error: variable a is already defined in method main(String [])

int a = 5;
^

2 errors

Terminal 2.4: Erro de compilação

2.17 Erro: Esquecer a inicialização de uma variável local

Outro erro de compilação comum em Java ocorre quando utilizamos uma variável local não ini-
cializada. No exemplo abaixo, a variável a foi utilizada sem antes ter sido inicializada.

1 class Programa {
2 public static void main(String [] args) {
3 int a;
4
5 System.out.println(a);
6 }
7 }

Código Java 2.60: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :5: error: variable a might not have been initialized
System.out.println(a);

68 www.k19.com.br

69 VARIÁVEIS

^
1 error

Terminal 2.5: Erro de compilação

2.18 Erro: Trocar aspas simples por aspas duplas ou vice-versa

Mais um erro comum em Java ocorre quando utilizamos aspas simples onde deveríamos usar
aspas duplas ou vice-versa. Veja um exemplo de programa em Java que utiliza aspas duplas onde
deveria haver aspas simples.

1 class Programa {
2 public static void main(String [] args) {
3 char c = "A";
4 }
5 }

Código Java 2.61: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: incompatible types
char c = "A";

^
required: char
found: String

1 error

Terminal 2.6: Erro de compilação

Agora, veja um exemplo de programa em Java que utiliza aspas simples onde deveria haver aspas
duplas.

1 class Programa {
2 public static void main(String [] args) {
3 String s = ’K19 Treinamentos ’;
4 }
5 }

Código Java 2.62: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: unclosed character literal
String s = ’K19 Treinamentos ’;

^
Programa.java :3: error: not a statement

String s = ’K19 Treinamentos ’;
^

Programa.java :3: error: ’;’ expected
String s = ’K19 Treinamentos ’;

^
Programa.java :3: error: unclosed character literal

String s = ’K19 Treinamentos ’;
^

Programa.java :3: error: not a statement
String s = ’K19 Treinamentos ’;

^
5 errors

Terminal 2.7: Erro de compilação

www.facebook.com/k19treinamentos 69

VARIÁVEIS 70

2.19 Erro: Utilizar o separador decimal errado

Outro erro de compilação comum em Java ocorre quando não utilizamos o separador decimal
correto. No exemplo abaixo, as casas decimais não foram separadas com o caractere “.” (ponto).

1 class Programa {
2 public static void main(String [] args) {
3 double d = 19,09;
4 }
5 }

Código Java 2.63: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: <identifier > expected
double d = 19,09;

^
1 error

Terminal 2.8: Erro de compilação

2.20 Erro: Valores incompatíveis com os tipos das variáveis

Também é um erro de compilação comum em Java atribuir valores incompatíveis com os tipos
das variáveis. No exemplo abaixo, tentamos armazenar um valor do tipo double em uma variável do
tipo int.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 19.09;
4 }
5 }

Código Java 2.64: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: possible loss of precision
int a = 19.09;

^
required: int
found: double

1 error

Terminal 2.9: Erro de compilação

2.21 Erro: Esquecer dos caracteres de tipagem para long ou float

Quando desejamos utilizar valores literais dos tipos long ou float, não podemos esquecer dos
caracteres de tipagem (“L”, “l”, “F” e “f”). Veja alguns exemplos de programa em Java com esse pro-
blema.

1 class Programa {

70 www.k19.com.br

71 VARIÁVEIS

2 public static void main(String [] args) {
3 long a = 2147483648;
4 }
5 }

Código Java 2.65: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: integer number too large: 2147483648
long a = 2147483648;

^
1 error

Terminal 2.10: Erro de compilação

1 class Programa {
2 public static void main(String [] args) {
3 float a = 3.14;
4 }
5 }

Código Java 2.66: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: possible loss of precision
float a = 3.14;

^
required: float
found: double

1 error

Terminal 2.11: Erro de compilação

2.22 Exercícios Complementares

1 Indique os tipos da linguagem Java que aceitam cada valor da lista abaixo.

1. “Bom dia”

2. 3

3. 235.13

4. true

5. -135

6. 256.23F

7. ‘A’

8. 6463275245745L

www.facebook.com/k19treinamentos 71

VARIÁVEIS 72

2 Na pasta variaveis, crie um arquivo chamado TestaVariavelPeso.java. Implemente um programa
em Java que declare uma variável do tipo double chamada peso. Essa variável deve ser inicializada
com o valor do seu peso. No final, exiba o valor dessa variável na saída padrão.

3 Na pasta variaveis, crie um arquivo chamado TestaTiposPrimitivos.java. Implemente um pro-
grama em Java que declare uma variável de cada um dos tipos primitivos da linguagem Java. Essas
variáveis devem ser inicializadas com valores adequados. Por fim, exiba os valores dessas variáveis
na saída padrão.

4 Considere um sistema de gerenciamento de mercadorias de uma loja. Implemente um programa
que declare variáveis para representar os seguintes dados: número do pedido, código do produto,
quantidade e valor total da compra. Inicialize essas variáveis com valores apropriados. Por fim, exiba
os valores armazenados.

2.23 Desafios

1 Olhando para a solução dada nos exercícios complementares, você faria alguma alteração caso
estivéssemos desenvolvendo o sistema para uma loja pequena? E se fosse para uma grande rede de
lojas? Quais seriam as alterações e quais as implicações?

2.24 Resumo

1 As variáveis são utilizadas para armazenar os dados que um programa deve manipular.

2 Toda variável possui um nome (identificador).

3 Em Java, as variáveis são classificadas em tipos (“tipadas”).

4 Para armazenar um valor em uma variável, esse valor deve ser compatível com o tipo da variá-
vel.

5 Em Java, as variáveis devem ser inicializadas antes de serem utilizadas.

6 A linguagem Java possui oito tipos primitivos: byte, short, int, long, float, double, boolean e char.

7 Para cada tipo primitivo, há um tipo não primitivo correspondente.

72 www.k19.com.br

73 VARIÁVEIS

8 Os tipos não primitivos correspondentes aos tipos primitivos são: Byte, Short, Integer, Long,
Float, Double, Boolean e Character.

9 As variáveis de tipos não primitivos aceitam o valor null.

10 Para armazenar números inteiros “grandes”, podemos utilizar o tipo BigInteger.

11 Para armazenar números reais “grandes” e mais precisos, podemos utilizar o tipo BigDecimal.

12 Uma variável do tipo String pode ser associada a uma sequência de caracteres.

13 Em Java, para trabalhar com datas e horas, podemos usar o tipo java.util.Calendar.

14 Em Java, os valores literais do tipo long devem possuir o sufixo “l” ou ”L”.

15 Em Java, os valores literais do tipo float devem possuir o sufixo “f” ou ”F”.

16 Em Java, o separador de casas decimais é o “.” (ponto).

17 Em Java, os valores literais booleanos são true e false.

18 Strings literais são definidas dentro de aspas duplas.

19 O valor de uma variável final não pode ser modificado.

20 Podemos gerar números aleatórios em Java com o método random() da classe Math.

21 As convenções de nomenclatura de variáveis são importantes para melhorar a legibilidade do
código.

22 Em Java, as convenções de nomenclatura de variáveis são baseadas em letras maiúsculas e
minúsculas.

www.facebook.com/k19treinamentos 73

VARIÁVEIS 74

2.25 Prova

1 Qual é a função das variáveis?

a) Exibir as mensagens dos programas.

b) Gerar números aleatórios.

c) Formatar números com casas decimais.

d) Armazenar dados.

e) Realizar cálculos matemáticos.

2 Qual afirmação está correta?

a) Algumas variáveis não possuem nome (identificador).

b) O tipo de uma variável determina onde ela está localizada.

c) Em Java, as variáveis não são tipadas.

d) Não é permitido criar duas variáveis do mesmo tipo.

e) Normalmente, o conteúdo de uma variável pode ser modificado.

3 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 double numero;
4
5 numero = 10.5;
6 }
7 }

Código Java 2.67: Programa.java

Qual afirmação está correta?

a) Na linha 3, a variável numero foi inicializada.

b) Na linha 3, a variável numero foi declarada e inicializada.

c) Na linha 3, a variável numero foi declarada.

d) Na linha 5, a variável numero foi declarada.

e) Na linha 5, a variável numero foi declarada e inicializada.

74 www.k19.com.br

75 VARIÁVEIS

4 Qual afirmação está correta?

a) Duas variáveis não podem ser inicializadas com o mesmo valor.

b) Podemos utilizar variáveis sem declará-las.

c) Duas ou mais variáveis com o mesmo nome podem ser declaradas no mesmo bloco.

d) Somente as variáveis declaradas podem ser inicializadas.

e) Somente as variáveis inicializadas podem ser declaradas.

5 O que ocorre quando uma variável local não inicializada é utilizada?

a) Um erro de compilação.

b) Um erro de execução.

c) A variável é inicializada com 0.

d) A variável é inicializada com um valor aleatório.

e) A variável é inicializada com null.

6 Qual alternativa apresenta os tipos primitivos da linguagem Java para números reais?

a) byte e double

b) int e float

c) float e double

d) real e long

e) single e double

7 Quais valores podemos armazenar em uma variável do tipo int?

a) Apenas números inteiros entre -128 e 127.

b) Apenas números inteiros entre -32768 e 32767.

c) Apenas números inteiros entre -2147483648 e 2147483647.

d) Apenas números inteiros entre 0 e 65535.

e) Apenas números inteiros entre -1000 e 1000.

www.facebook.com/k19treinamentos 75

VARIÁVEIS 76

8 Qual afirmação está correta?

a) O tipo não primitivo Int corresponde ao tipo primitivo int.

b) O tipo não primitivo Char corresponde ao tipo primitivo char.

c) O tipo não primitivo Bool corresponde ao tipo primitivo boolean.

d) O tipo não primitivo Decimal corresponde ao tipo primitivo double.

e) Os tipos não primitivos aceitam o valor null.

9 Qual afirmação está incorreta?

a) O tipo String é utilizado para armazenar texto.

b) O tipo String não aceita o valor null.

c) Qualquer caractere definido na codificação UTF-16 do padrão Unicode pode ser utilizado para
formar uma string.

d) O tipo Calendar é utilizado para armazenar data e hora.

e) Cada caractere de uma string ocupa 16 bits.

10 Considere a linguagem Java. Qual alternativa declara corretamente um caractere literal?

a) ’K’

b) ’KK’

c) "K"

d) "KK"

e) K

f) KK

11 Em Java, quais palavras representam os valores literais booleanos?

a) verdadeiro e falso

b) True e False

c) True e false

d) true ou verdadeiro e false ou falso

76 www.k19.com.br

77 VARIÁVEIS

e) true e false

12 Em Java, quais são as formas de definir os valores literais numéricos inteiros?

a) decimal e hexadecimal

b) binário e decimal

c) octal e decimal

d) binário, decimal e hexadecimal

e) binário, octal, decimal e hexadecimal

13 Como são definidas as strings em Java?

a) Dentro de aspas simples.

b) Dentro de aspas duplas.

c) Dentro de aspas simples ou aspas duplas.

d) Entre parênteses.

e) Entre colchetes.

14 Qual afirmação está correta?

a) Depois de inicializada, o conteúdo de uma variável final não pode ser modificado.

b) Variáveis do tipo boolean não podem ser final.

c) O conteúdo de uma variável final não pode ser acessado.

d) O conteúdo de uma variável final não pode ser exibido na tela.

e) Toda variável final é inicializada automaticamente.

15 Qual nome de variável segue a convenção de nomenclatura da linguagem Java?

a) idadeDoMarcelo

b) idadedomarcelo

c) idade_do_marcelo

d) idade-do-marcelo

www.facebook.com/k19treinamentos 77

VARIÁVEIS 78

e) idade do marcelo

16 Qual nome de variável segue as regras de nomenclatura da linguagem Java?

a) 90pesoMinimoDoMarcelo

b) int

c) pesoDoMarceloEstaAcimaDe90

d) peso.do.marcelo

e) peso do marcelo

17 Considere o seguinte código Java.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 10;
4
5 double a = 10.7;
6
7 int a = 5;
8
9 System.out.println(a);
10 }
11 }

Código Java 2.68: Programa.java

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque não é permitido declarar duas variá-
veis do tipo int no método main.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque não é permitido declarar
duas variáveis do tipo int no método main.

c) Na execução da classe Programa, os valores 10, 10.7 e 5 serão exibidos na saída padrão.

d) Na execução da classe Programa, ocorrerá um erro porque o separador de casa decimal é a vír-
gula e não o ponto.

e) Na compilação do arquivo Programa.java, ocorrerá um erro porque não é permitido declarar
duas ou mais variáveis com o mesmo nome em um mesmo bloco.

18 Considere o seguinte código Java.

78 www.k19.com.br

79 VARIÁVEIS

1 class Programa {
2 public static void main(String [] args) {
3 int a;
4
5 System.out.println(a);
6 }
7 }

Código Java 2.69: Programa.java

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque não é permitido utilizar variáveis não
inicializadas.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque não é permitido utilizar va-
riáveis não inicializadas.

c) Na execução da classe Programa, o valor 0 será exibido na saída padrão.

d) Na execução da classe Programa, ocorrerá um erro porque variáveis do tipo int não podem ser
exibidas na saída padrão.

e) Na compilação do arquivo Programa.java, ocorrerá um erro porque a variável a não foi declarada
corretamente.

19 Considere o seguinte código Java.

1 class Programa {
2 public static void main(String [] args) {
3 char c = "A";
4
5 System.out.println(c);
6 }
7 }

Código Java 2.70: Programa.java

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque o tipo char não é primitivo.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque o tipo char não é primitivo.

c) Na execução da classe Programa, a letra “A” será exibida na saída padrão.

d) Na execução da classe Programa, o valor 65 será exibido na saída padrão.

e) Na compilação do arquivo Programa.java, ocorrerá um erro porque a utilização das aspas duplas
está incorreta.

20 Considere o seguinte código Java.

www.facebook.com/k19treinamentos 79

VARIÁVEIS 80

1 class Programa {
2 public static void main(String [] args) {
3 double d = 19,09;
4
5 System.out.println(d);
6 }
7 }

Código Java 2.71: Programa.java

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque o tipo double não aceita valores com
casas decimais.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque o tipo double não aceita va-
lores com casas decimais.

c) Na execução da classe Programa, o valor “19,09” será exibido na saída padrão.

d) Na compilação do arquivo Programa.java, ocorrerá um erro porque o separador de casas deci-
mais é o ponto e não a vírgula.

e) Na execução da classe Programa, os valores 19 e 9 serão exibidos na saída padrão.

21 Considere o seguinte código Java.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 19.09;
4
5 System.out.println(a);
6 }
7 }

Código Java 2.72: Programa.java

O que podemos afirmar sobre esse código?

a) Na execução da classe Programa, ocorrerá um erro porque o tipo int não aceita valores com casas
decimais.

b) Na compilação do arquivo Programa.java, ocorrerá um erro porque o tipo int não aceita valores
com casas decimais.

c) Na execução da classe Programa, o valor “19.09” será exibido na saída padrão.

d) Na compilação do arquivo Programa.java, ocorrerá um erro porque o separador de casas deci-
mais é a vírgula e não o ponto.

e) Na execução da classe Programa, o valor 19 será exibido na saída padrão.

Minha Pontuação Pontuação Mínima: 16 Pontuação Máxima: 21

80 www.k19.com.br

OPERADORES

C
A

P
Í

T
U

L
O

3
3.1 Introdução

Para manipular os valores literais ou os dados armazenados nas variáveis de uma aplicação, de-
vemos utilizar os operadores oferecidos pela linguagem de programação que estamos utilizando. Os
principais tipos de operações são:

• Conversões

• Aritméticas (+ - * / %)

• Atribuições (= += -= *= /= %= ++ --)

• Comparações (== != < <= > >=)

• Lógicas (& | ˆ && || ! ? :)

3.2 Conversões Entre Tipos Primitivos

Considere um número inteiro dentro do intervalo de valores do tipo int. Esse valor pode ser
armazenado em uma variável do tipo long, pois todos os valores que estão no intervalo do tipo int

também estão no intervalo do tipo long.

Por causa disso, podemos copiar diretamente qualquer valor armazenado em uma variável do
tipo int para uma variável do tipo long. Veja o exemplo a seguir.

1 int a = 19;
2 long b = a;

Código Java 3.1: Compatibilidade

Agora, considere um número inteiro dentro do intervalo de valores do tipo long. Não podemos
garantir que esse valor possa ser armazenado em uma variável do tipo int porque o intervalo do tipo
long é mais abrangente do que o intervalo do tipo int. Por exemplo, o número 2147483648 está no
intervalo do tipo long mas não está no intervalo do tipo int.

Por causa disso, não podemos copiar diretamente um valor armazenado em uma variável do tipo
long para uma variável do tipo int. A tentativa de realizar esse tipo de cópia gera erro de compilação
mesmo que o valor armazenado na variável do tipo long seja compatível com int. Veja o exemplo a
seguir.

www.facebook.com/k19treinamentos 81

OPERADORES 82

1 long a = 19;
2 int b = a;

Código Java 3.2: Erro de compilação - Incompatibilidade

Observe, na Tabela 3.1, a compatibilidade entre os tipos primitivos. Note, por exemplo, que um
valor do tipo int pode ser convertido automaticamente para long, float ou double. Por outro lado, um
valor do tipo long não pode ser convertido automaticamente para byte, short, char ou int.

Para →
byte short char int long float double

De ↓
byte 3 3 7 3 3 3 3

short 7 3 7 3 3 3 3

char 7 7 3 3 3 3 3

int 7 7 7 3 3 3 3

long 7 7 7 7 3 3 3

float 7 7 7 7 7 3 3

double 7 7 7 7 7 7 3

Tabela 3.1: Compatibilidade dos tipos primitivos

Para copiar o valor armazenado em uma variável para outra variável de um tipo incompatível, é
necessário realizar uma operação de casting. Esse tipo de operação força a conversão dos valores.
No exemplo abaixo, o valor armazenado na variável a, que é do tipo long, foi copiado para a variável
b, que é do tipo int, com uma operação de casting.

1 long a = 19;
2 int b = (int)a;

Código Java 3.3: Casting

Operações de casting podem gerar resultados indesejados. Suponha que uma variável do tipo
long armazene o valor 3000000000. Se uma operação de casting for aplicada para copiar esse valor
para uma variável do tipo int, o valor obtido na cópia será -1294967296.

1 long a = 3000000000L;
2 int b = (int)a; // b = -1294967296

Código Java 3.4: Valores indesejados com casting

Em geral, quando há o risco de obter valores indesejados, os compiladores exigem a operação
de casting. Isso funciona como um alerta para o programador. Contudo, em alguns casos, mesmo
com esse risco, os compiladores não exigem a operação de casting. No exemplo abaixo, a variável do
tipo long armazena o valor 9223372036854775807. Ao copiar o conteúdo dessa variável para uma
variável do tipo float, o valor obtido é 9223372000000000000.

1 long a = 9223372036854775807L;
2 float b = a; // b = 9223372000000000000

Código Java 3.5: Valores indesejados mesmo sem casting

82 www.k19.com.br

83 OPERADORES

O tipo boolean não é compatível com os outros tipos primitivos. Além disso, não é possível utilizar
operações de casting para realizar conversões de booleanos. No exemplo abaixo, a variável a é do tipo
int e a variável b é do tipo boolean. A tentativa de copiar o valor da variável b para a variável c, que é
do tipo int, com casting gera erro de compilação. Analogamente, a tentativa de copiar o valor da
variável a para variável d, que é do tipo boolean, com casting também gera erro de compilação.

1 int a = 10;
2
3 boolean b = true;
4
5 int c = (int)b; // erro de compilação
6
7 boolean d = (boolean)a; // erro de compilação

Código Java 3.6: Conversão de booleanos

Curiosidade

No dia 6 de Junho de 1996, a Agência Espacial Europeia lançava o voo 501 do foguete
Ariane 5. O objetivo da missão era transportar satélites para o espaço. Esses satélites seriam
utilizados para analisar o impacto da atividade solar sobre a atmosfera terrestre. O desenvolvi-
mento desse projeto levou uma década e custou cerca de 7 bilhões de dólares.

O lançamento do foguete, no entanto, não ocorreu como o esperado. Em menos de um minuto
após o início do lançamento, o foguete desviou-se de sua trajetória e explodiu, causando um
prejuízo direto de cerca de 360 milhões de dólares.

A explosão foi causada por uma falha no software que controlava o foguete. Essa falha ocorreu
devido a uma operação de conversão de um valor que estava no formato ponto flutuante de 64
bits para o formato inteiro de 16 bits. Como o valor era superior a 32767, ele não poderia ser
representado no formato inteiro de 16 bits. Dessa forma, o valor obtido na conversão desenca-
deou uma falha no sistema de controle do foguete, levando à sua explosão.

Fazendo um paralelo com a linguagem Java, esse problema poderia ocorrer na conversão de um
valor do tipo double para um valor do tipo short.

3.3 Conversões Entre Tipos Primitivos e Não Primitivos

Um valor primitivo pode ser convertido para o valor não primitivo correspondente e vice-versa.
A conversão de primitivo para não primitivo é denominada boxing e a conversão inversa, ou seja, de
não primitivo para primitivo é denominada unboxing.

No exemplo abaixo, o valor literal 10, que é do tipo int, foi convertido para Integer através de uma
operação de boxing. Na sequência, através de uma operação de unboxing, o valor do tipo Integer foi
convertido para int.

1 Integer x = Integer.valueOf (10); // boxing
2
3 int y = x.intValue (); // unboxing

Código Java 3.7: Boxing e unboxing

www.facebook.com/k19treinamentos 83

OPERADORES 84

A Tabela 3.2 mostra como realizar o boxing e o unboxing para cada tipo primitivo e seu corres-
pondente não primitivo.

Boxing Unboxing
Boolean.valueOf() booleanValue()

Byte.valueOf() byteValue()

Short.valueOf() shortValue()

Character.valueOf() charValue()

Integer.valueOf() intValue()

Long.valueOf() longValue()

Float.valueOf() floatValue()

Double.valueOf() doubleValue()

Tabela 3.2: Boxing e unboxing

A partir da versão 5 da linguagem Java, quando necessário, as operações de boxing e unboxing
são realizadas automaticamente. Daí surge o termo autoboxing.

No exemplo abaixo, a variável x é do tipo Integer. Na primeira atribuição, o valor literal 1, que é
do int, é automaticamente convertido para o tipo Integer. O inverso ocorre na segunda atribuição,
quando o valor armazenado na variável x é automaticamente convertido do tipo Integer para o valor
correspondente do tipo int.

1 Integer x = 1; // boxing automático
2
3 int y = x; // unboxing automático

Código Java 3.8: Autoboxing

Não é permitido o boxing ou o unboxing entre um tipo primitivo e um tipo não primitivo não
correspondentes. Veja a correspondência entre tipos primitivos e não primitivos na Tabela 2.3.

No exemplo abaixo, o valor literal 1, que é do tipo int, não pode ser convertido para o tipo Double,
pois int e Double não são correspondentes. Analogamente, na segunda atribuição, o valor armaze-
nado na variável d, que é do tipo Double, não pode ser convertido para o tipo int.

1 Double d = 1; // erro de compilação
2
3 int i = d; // erro de compilação

Código Java 3.9: Boxing e unboxing inválidos

Para realizar conversões entre tipos não correspondentes, podemos usar o casting. Confira o
exemplo abaixo.

1 Double d = (double)1;
2
3 int i = (int)(double)d;

Código Java 3.10: Boxing e unboxing com casting

Na primeira linha do exemplo acima, o valor literal 1 do tipo int é convertido para o tipo double

por meio de casting. Em seguida, é realizado um boxing de double para Double. Na terceira linha,

84 www.k19.com.br

85 OPERADORES

primeiro é realizado um unboxing do tipo Double para o tipo double através de um casting. Em seguida,
é realizada uma conversão do tipo double para o tipo int por meio de casting.

3.4 Conversão Entre Tipos Primitivos e String

Considere uma variável do tipo String associada à sequência de caracteres “19”. Não podemos
copiar o valor dessa variável para uma variável do tipo int, pois um erro de compilação seria gerado.

1 String a = "19";
2 int b = a;

Código Java 3.11: Erro de compilação - Incompatibilidade

Nesses casos, é necessário realizar uma conversão de String para int. Em Java, essa conversão
pode ser realizada com o uso do método parseInt da classe Integer. Confira o exemplo abaixo.

1 String a = "19";
2 int b = Integer.parseInt(a);

Código Java 3.12: Conversão de String para int

A Tabela 3.3 a seguir mostra os métodos utilizados para converter valores do tipo String para
valores primitivos.

byte Byte.parseByte()
short Short.parseShort()
int Integer.parseInt()
long Long.parseLong()
float Float.parseFloat()
double Double.parseDouble()
boolean Boolean.parseBoolean()

Tabela 3.3: Conversão de valores do tipo String para tipos primitivos

O método parseBoolean() devolve true se a string passada como parâmetro for igual a “true” in-
dependentemente das letras serem maiúsculas ou minúsculas (por exemplo, “TRUE”, “tRuE”, etc).
Caso contrário, o método devolve false.

Para os demais métodos, se o argumento não respeitar as regras estabelecidas na documentação
do Java Standard Edition (Java SE), um erro de execução será gerado. O código abaixo exemplifica
casos que provocam erros de execução.

1 // NumberFormatException
2 Byte.parseByte("");
3 Short.parseShort("abc");
4 Integer.parseInt("18 + 1");
5 Integer.parseInt(" 19 ");
6 Long.parseLong("19L");
7 Double.parseDouble("K19");
8
9 // NullPointerException
10 Double.parseDouble(null);

Código Java 3.13: Erros de conversão

www.facebook.com/k19treinamentos 85

OPERADORES 86

3.5 Conversões Automáticas

Considere o seguinte exemplo.

1 byte b = 10;

Como vimos, por padrão, o valor literal 10 é do tipo int. Valores do tipo int não podem ser atri-
buídos à variáveis do tipo byte.

Contudo, de acordo com a especificação da linguagem Java, nas atribuições envolvendo variáveis
do tipo byte e valores literais, a conversão é automática desde que o valor a ser atribuído esteja no
intervalo de valores do tipo da variável.

No exemplo acima, como o número 10 está no intervalo de valores do tipo byte, o valor literal 10,
que é do tipo int, é convertido automaticamente para o tipo byte. Tecnicamente, as duas inicializa-
ções abaixo são equivalentes.

1 byte b = 10;
2
3 byte b = (byte)10;

A tentativa de atribuir o valor 200 a uma variável do tipo byte gera erro de compilação, pois esse
valor não está no intervalo de valores aceitos pelo tipo byte.

1 byte b = 200; // erro de compilação

Analogamente, a conversão automática também ocorrerá nas atribuições com expressões cons-
tantes (expressões envolvendo valores literais e variáveis final). No exemplo abaixo, o valor da ex-
pressão constante 1 + 1, que é do tipo int, foi automaticamente convertido para byte.

1 byte b = 1 + 1;

A mesma regra é aplicada nas atribuições envolvendo variáveis do tipo short e char. No exemplo
abaixo, o valor literal 3000, que é do tipo int, é convertido automaticamente para short. O valor literal
65, que também é do tipo int, é convertido para char.

1 short s = 30000; // conversão automática
2
3 char c = 65; // conversão automática

No exemplo abaixo, a variável b é do tipo Byte. Na atribuição, o valor literal 10, que é do tipo int,
é convertido automaticamente para o tipo byte. Na sequência, o boxing também ocorre automatica-
mente e o valor é convertido de byte para Byte.

1 Byte b = 10; // casting e boxing

A mesma regra é aplicada nas atribuições envolvendo variáveis do tipo Short e Char.

No exemplo abaixo, o valor literal 3000, que é do tipo int, é convertido automaticamente para
short e depois para Short através de um boxing. O valor literal 65, que também é do tipo int, é con-

86 www.k19.com.br

87 OPERADORES

vertido para char e depois para Character através de um boxing.

1 Short s = 30000; // casting e boxing
2
3 Character c = 65; // casting e boxing

Simulação

Veremos, a seguir, a simulação de um programa em Java para ilustrar alguns tipos de conversões.

1 Ao executar a primeira linha do método main, uma variável do tipo String chamada s será criada
e associada à sequência de caracteres “3.14”.

1 class Conversao {
2 public static void main(String [] args) {
3 String s = "3.14";
4 double d = Double.parseDouble(s);
5 int i = (int)d;
6 byte b = 87;
7 System.out.println(i);
8 }
9 }

s = “3.14”

2 Em seguida, na execução da linha 4, o método parseDouble da classe Double converte a string
“3.14” para um valor do tipo double. Esse valor é armazenado na variável d.

1 class Conversao {
2 public static void main(String [] args) {
3 String s = "3.14";
4 double d = Double.parseDouble(s);
5 int i = (int)d;
6 byte b = 87;
7 System.out.println(i);
8 }
9 }

s = “3.14”

d = 3.14

3 Na execução da linha 5, o valor do tipo double armazenado na variável d é convertido para o tipo
int através de uma operação de casting. O valor obtido nessa conversão é armazenado na variável
i. Como o tipo int não permite o armazenamento de casas decimais, o resultado da conversão é o
valor inteiro 3.

1 class Conversao {
2 public static void main(String [] args) {
3 String s = "3.14";
4 double d = Double.parseDouble(s);
5 int i = (int)d;
6 byte b = 87;
7 System.out.println(i);
8 }
9 }

s = “3.14”

d = 3.14

i = 3

www.facebook.com/k19treinamentos 87

OPERADORES 88

4 Na execução da linha 6, o literal 87, que é do tipo int, é automaticamente convertido para o tipo
byte para que possa ser armazenado na variável b.

1 class Conversao {
2 public static void main(String [] args) {
3 String s = "3.14";
4 double d = Double.parseDouble(s);
5 int i = (int)d;
6 byte b = 87;
7 System.out.println(i);
8 }
9 }

s = “3.14”

d = 3.14

i = 3

b = 87

5 Ao executar a linha 7, o valor armazenado na variável i é exibido na saída padrão.

1 class Conversao {
2 public static void main(String [] args) {
3 String s = "3.14";
4 double d = Double.parseDouble(s);
5 int i = (int)d;
6 byte b = 87;
7 System.out.println(i);
8 }
9 }

s = “3.14”

d = 3.14

i = 3

b = 87

3

3.6 Exercícios de Fixação

1 Abra um terminal, entre na pasta dos seus exercícios e crie uma pasta chamada operadores para
os arquivos desenvolvidos nesse capítulo.

2 Na pasta operadores, crie um arquivo chamado ConversaoPrimitivos.java. Para eliminar os erros
de compilação, complete os espaços do código abaixo quando necessário.

1 class ConversaoPrimitivos {
2 public static void main(String [] args) {
3 int a = 10;
4 long b = a;
5 int c = b;
6 float d = b;
7 short e = a;
8 double f = d;
9 Long g = b;
10 long h = g;
11
12 System.out.println(a);
13 System.out.println(b);
14 System.out.println(c);
15 System.out.println(d);
16 System.out.println(e);
17 System.out.println(f);
18 System.out.println(g);
19 System.out.println(h);
20 }
21 }

Código Java 3.26: ConversaoPrimitivos.java

88 www.k19.com.br

89 OPERADORES

3 Compile o arquivo ConversaoPrimitivos.java e execute o programa.

4 Na pasta operadores, crie um arquivo chamado Casting.java. Crie uma variável chamada numero1

do tipo long e inicialize-a com o valor 2147483648. Depois, crie uma variável chamada numero2 do
tipo int e copie o valor da variável numero1 para a variável numero2. Por fim, exiba, na saída padrão, os
valores dessas duas variáveis.

5 Compile o arquivo Casting.java e execute a classe Casting.

6 Na pasta operadores, crie um arquivo chamado Conversao.java. Crie uma variável chamada texto

do tipo String e associe a ela a sequência de caracteres “19.09”. Depois, faça a conversão do valor
associado a essa variável para double e armazene o resultado em uma variável chamada numero do
tipo double. Por fim, exiba o valor da variável numero.

7 Compile o arquivo Conversao.java e execute a classe Conversao.

3.7 Operadores Aritméticos

Os operadores aritméticos funcionam de forma muito semelhante aos operadores da Matemá-
tica. Os operadores aritméticos são:

• + (adição)

• - (subtração)

• * (multiplicação)

• / (divisão)

• % (módulo)

1 System.out.println (1 + 2); // exibe: 3
2 System.out.println (3 - 1); // exibe: 2
3 System.out.println (2 * 3); // exibe: 6
4 System.out.println (10 / 2); // exibe: 5
5 System.out.println (10 % 4); // exibe: 2

Código Java 3.27: Exemplo de uso dos operadores aritméticos

Os operandos das operações aritméticas podem ser tanto de tipos primitivos numéricos quanto
de tipos não primitivos numéricos (ver Tabela 2.3). Ou seja, os operandos podem ser dos tipos byte,
short, char, int, long, float, double, Byte, Short, Character, Integer, Long, Float e Double.

Contudo, as operações aritméticas são realizadas apenas com valores primitivos numéricos, ou
seja, com valores dos tipos byte, short, char, int, long, float e double. Dessa forma, os valores dos
operandos de tipos não primitivos numéricos são convertidos, através do autoboxing, para valores
primitivos numéricos antes das operações serem efetuadas.

Armadilha

www.facebook.com/k19treinamentos 89

OPERADORES 90

Como a precisão dos tipos float e double é limitada, algumas operações aritméticas
podem gerar valores incorretos. Por exemplo, o resultado da operação 0.9−0.8 deveria ser 0.1.
Contudo, na linguagem Java, nem o valor 0.9 e nem o valor 0.8 podem ser representados em float

ou double. Assim, valores aproximados são utilizados. O número 0.9 é substituído pelo valor
0.90000000000000002220446049250313080847263336181640625 e o número 0.8 é substituído
pelo valor 0.8000000000000000444089209850062616169452667236328125. Portanto, o resultado
da operação não é 0.1, mas 0.09999999999999997779553950749686919152736663818359375. O
método println exibe esse resultado arredondado.

1 System.out.println (0.9 - 0.8); // exibe: 0.09999999999999998

Nesse caso, uma alternativa para obter o valor correto seria utilizar o tipo BigDecimal, que possui
precisão arbitrária.

1 BigDecimal a = new BigDecimal("0.9");
2 BigDecimal b = new BigDecimal("0.8");
3 System.out.println(a.subtract(b)); // exibe: 0.1

A subtração com valores do tipo BigDecimal é realizada através do método subtract. As operações
com valores do tipo BigDecimal são mais lentas do que as operações com valores do tipo float ou
do tipo double. Por isso, o tipo BigDecimal só deve ser utilizado se a precisão for realmente funda-
mental. Geralmente, em cálculos financeiros, há a necessidade de utilizar o tipo BigDecimal.

Mais Sobre

As operações de potenciação, raiz quadrada e valor absoluto podem ser realizadas atra-
vés dos métodos Math.pow, Math.sqrt e Math.abs, respectivamente.

1 System.out.println(Math.pow(2, 5)); // exibe 32
2 System.out.println(Math.sqrt (9)); // exibe 3
3 System.out.println(Math.abs (-19.3)); // exibe 19.3

Código Java 3.30: Potenciação, raiz quadrada e valor absoluto

O método sqrt devolve NaN quando é aplicado a valores negativos.

Módulo

Em Matemática, o módulo de um número x é o valor numérico de x desconsiderando o seu
sinal (valor absoluto). Por exemplo, o módulo de −2 é 2 e expressamos esse valor da seguinte forma:
| − 2| = 2. Em Java, a palavra módulo tem outro significado. Ela indica o resto da divisão de um
número por outro.

Podemos calcular o resto da divisão de um número por outro através do operador %. Por exemplo,
o resto da divisão do número 6 pelo número 5 é 1. Para calculá-lo, utilizamos a operação 6 % 5. Nas
operações de módulo, o sinal do resultado é igual ao sinal do dividendo. Veja alguns exemplos abaixo.

1 System.out.println (6 % 5); // exibe: 1
2 System.out.println (6 % -5); // exibe: 1
3 System.out.println(-6 % 5); // exibe: -1
4 System.out.println(-6 % -5); // exibe: -1

90 www.k19.com.br

91 OPERADORES

Divisão por 0

Nas operações de divisão ou de módulo envolvendo números inteiros, se o divisor for 0, o erro de
execução ArithmeticException ocorrerá.

1 int a = 10 / 0; // Ocorrerá ArithmeticException

Por outro lado, nas operações de divisão ou módulo envolvendo pelo menos um número real, o
resultado será +Infinity, -Infinity ou NaN se o divisor for 0.

1 double b = 10.0 / 0; // O resultado será +Infinity
2 double c = -10.0 / 0; // O resultado será -Infinity
3 double d = 0.0 / 0; // O resultado será NaN

3.8 Tipo do Resultado de uma Operação Aritmética

No exemplo abaixo, a variável b1 foi inicializada com o valor 1, a variável b2 foi inicializada com o
valor 2 e a variável b3 foi inicializada com resultado da operação b1 + b2. Contudo, na linguagem Java,
operações aritméticas envolvendo valores do tipo byte devolvem valores do tipo int. Dessa forma, o
resultado da operação b1 + b2 não pode ser armazenado diretamente na variável b3.

1 byte b1 = 1;
2 byte b2 = 2;
3 byte b3 = b1 + b2; // erro de compilação

Código Java 3.34: Resultado das operações aritméticas

Neste caso, poderíamos aplicar uma operação de casting no resultado da operação “b1 + b2”.

1 byte b1 = 1;
2 byte b2 = 2;
3 byte b3 = (byte)(b1 + b2);

Código Java 3.35: Utilizando casting

Para saber o tipo do resultado de uma operação aritmética, devemos aplicar as seguintes regras:

• Se pelo menos um dos operandos for do tipo double ou Double, o resultado será do tipo double.

• Caso contrário, se pelo menos um dos operandos for do tipo float ou Float, o resultado será do
tipo float.

• Caso contrário, se pelo menos um dos operandos for do tipo long ou Long, o resultado será do
tipo long.

• Caso contrário, o resultado será do tipo int.

De acordo com as regras acima, no exemplo a seguir, o resultado da operação a + b é um valor do
tipo int. O resultado da operação b + c é um valor do tipo double. Por fim, o resultado da operação a

+ c também é um valor do tipo double.

1 byte a = 1;
2
3 short b = 2;

www.facebook.com/k19treinamentos 91

OPERADORES 92

4
5 double c = 3.14;
6
7 int resutaldo1 = a + b;
8
9 double resultado2 = b + c;
10
11 double resultado3 = a + c;

Código Java 3.36: Determinando o tipo do resultado de uma operação aritmética

3.9 Divisão Inteira

Considere uma operação de divisão entre valores inteiros. Por exemplo, uma divisão entre valores
do tipo int.

1 int a = 5;
2 int b = 2;
3 System.out.println(a / b); // exibe: 2

Código Java 3.37: Divisão inteira

Matematicamente, o resultado da operação 5/2 é 2.5. Contudo, no exemplo acima, o valor obtido
na divisão a / b é 2. Quando ocorre uma divisão entres dois valores inteiros, a parte fracionária do
resultado é descartada.

Podemos converter explicitamente um dos valores envolvidos na divisão ou até mesmo os dois
para algum tipo que aceita números reais. Dessa forma, a divisão não seria inteira e a parte fraci-
onária não seria descartada. Essas conversões podem ser realizadas com operações de casting. No
exemplo abaixo, o resultado de cada uma das operações de divisão é 2.5. Lembre-se que as operações
de casting são realizadas antes das operações aritméticas.

1 int a = 5;
2 int b = 2;
3
4 // convertendo o valor armazenado na variável "a"
5 System.out.println ((double)a / b); // exibe: 2.5
6
7 // convertendo o valor armazenado na variável "b"
8 System.out.println(a / (double)b); // exibe: 2.5
9
10 // convertendo os valores armazenados nas variáveis "a" e "b"
11 System.out.println ((double)a / (double)b); // exibe: 2.5

Código Java 3.38: Castings

Pare para pensar...

Considerando o que foi discutido anteriormente a respeito de divisão inteira e casting,
qual é o resultado da operação do exemplo a seguir?

1 double d = (double)(5 / 2);

92 www.k19.com.br

93 OPERADORES

Simulação

Nessa simulação, realizaremos operações aritméticas e operações de casting. Além disso, mos-
traremos as diferenças entre divisão inteira e divisão real.

1 Ao executar a classe Operacoes, a primeira linha do método main será processada. O operador %

calculará o resto da divisão entre os números 13 e 4. O resultado dessa operação é 1.

1 class Operacoes {
2 public static void main(String [] args) {
3 System.out.println (13 % 4);
4 System.out.println (10 / 4);
5 System.out.println ((double)10 / 4);
6 System.out.println (10 / (double)4);
7 System.out.println ((double)(10 / 4));
8 System.out.println (10.0 / 0);
9 System.out.println (0.0 / 0);
10 System.out.println (0 / 0);
11 }
12 }

1

2 O fluxo de execução prossegue e a linha 4 será executada. A divisão entre os números inteiros
10 e 4 será realizada com a utilização do operador /. Como os dois operandos dessa operação são
valores inteiros, ocorre uma divisão inteira. Por isso, o resultado será 2 e não 2.5.

1 class Operacoes {
2 public static void main(String [] args) {
3 System.out.println (13 % 4);
4 System.out.println (10 / 4);
5 System.out.println ((double)10 / 4);
6 System.out.println (10 / (double)4);
7 System.out.println ((double)(10 / 4));
8 System.out.println (10.0 / 0);
9 System.out.println (0.0 / 0);
10 System.out.println (0 / 0);
11 }
12 }

1
2

3 Em seguida, a linha 5 é executada. Assim como na linha 4, o operador / será utilizado para
calcular a divisão entre os números 10 e 4. Contudo, uma operação de casting converte o literal 10,
que é do tipo int, para double antes da divisão. Como pelo menos um dos operandos é um valor real,
ocorrerá uma divisão real. Sendo assim, o resultado terá casas decimais e será exibido o número 2.5
na saída padrão.

www.facebook.com/k19treinamentos 93

OPERADORES 94

1 class Operacoes {
2 public static void main(String [] args) {
3 System.out.println (13 % 4);
4 System.out.println (10 / 4);
5 System.out.println ((double)10 / 4);
6 System.out.println (10 / (double)4);
7 System.out.println ((double)(10 / 4));
8 System.out.println (10.0 / 0);
9 System.out.println (0.0 / 0);
10 System.out.println (0 / 0);
11 }
12 }

1
2
2.5

4 Na sequência, a linha 6 é executada. Assim como nas linhas 4 e 5, o operador / será utilizado
para calcular a divisão entre os números 10 e 4. Antes da divisão, uma operação de casting converte o
literal 4, que é do tipo int, para double. Como pelo menos um dos operandos é um valor real, ocorrerá
uma divisão real. Sendo assim, o resultado será 2.5.

1 class Operacoes {
2 public static void main(String [] args) {
3 System.out.println (13 % 4);
4 System.out.println (10 / 4);
5 System.out.println ((double)10 / 4);
6 System.out.println (10 / (double)4);
7 System.out.println ((double)(10 / 4));
8 System.out.println (10.0 / 0);
9 System.out.println (0.0 / 0);
10 System.out.println (0 / 0);
11 }
12 }

1
2
2.5
2.5

5 Continuando, a linha 7 é executada. Assim como nas linhas 4, 5 e 6, o operador / será utilizado
para calcular a divisão entre os números 10 e 4. Note que essa operação foi delimitada com parên-
teses. Sendo assim, a divisão será executada antes da operação de casting. Como os dois operandos
dessa divisão são números inteiros, o resultado não terá casas decimais. Sendo assim, esse resultado
será 2. Em seguida, o casting transformará esse valor inteiro em real. Consequentemente, será exi-
bido o número 2.0 na saída padrão.

1 class Operacoes {
2 public static void main(String [] args) {
3 System.out.println (13 % 4);
4 System.out.println (10 / 4);
5 System.out.println ((double)10 / 4);
6 System.out.println (10 / (double)4);
7 System.out.println ((double)(10 / 4));
8 System.out.println (10.0 / 0);
9 System.out.println (0.0 / 0);
10 System.out.println (0 / 0);
11 }
12 }

94 www.k19.com.br

95 OPERADORES

1
2
2.5
2.5
2.0

6 A próxima linha que será executada é a 8. Nessa linha, a divisão entre o literal 10.0, que é do tipo
double, e o literal 0, que é do tipo int, é realizada com a utilização do operador /. Como pelo menos
um dos operandos é um valor real, ocorrerá a divisão real. Sendo assim, o resultado dessa operação
é Infinity.

1 class Operacoes {
2 public static void main(String [] args) {
3 System.out.println (13 % 4);
4 System.out.println (10 / 4);
5 System.out.println ((double)10 / 4);
6 System.out.println (10 / (double)4);
7 System.out.println ((double)(10 / 4));
8 System.out.println (10.0 / 0);
9 System.out.println (0.0 / 0);
10 System.out.println (0 / 0);
11 }
12 }

1
2
2.5
2.5
2.0
Infinity

7 A próxima linha que será executada é a 9. Nessa linha, a divisão entre o literal 0.0, que é do tipo
double, e o literal 0, que é do tipo int, é realizada com a utilização do operador /. Como pelo menos
um dos operandos é um valor real, ocorrerá a divisão real. Sendo assim, o resultado dessa operação
é NaN.

1 class Operacoes {
2 public static void main(String [] args) {
3 System.out.println (13 % 4);
4 System.out.println (10 / 4);
5 System.out.println ((double)10 / 4);
6 System.out.println (10 / (double)4);
7 System.out.println ((double)(10 / 4));
8 System.out.println (10.0 / 0);
9 System.out.println (0.0 / 0);
10 System.out.println (0 / 0);
11 }
12 }

1
2
2.5
2.5
2.0
Infinity
NaN

8 Continuando a execução, a linha 10 é executada e a divisão do literal 0, que é do tipo int, por
ele mesmo é calculada com o operador /. Essa operação é considerada uma divisão inteira por-
que os dois operandos são valores inteiros. Uma divisão inteira por 0 gera um erro de execução, o
ArithmeticException.

www.facebook.com/k19treinamentos 95

OPERADORES 96

1 class Operacoes {
2 public static void main(String [] args) {
3 System.out.println (13 % 4);
4 System.out.println (10 / 4);
5 System.out.println ((double)10 / 4);
6 System.out.println (10 / (double)4);
7 System.out.println ((double)(10 / 4));
8 System.out.println (10.0 / 0);
9 System.out.println (0.0 / 0);
10 System.out.println (0 / 0);
11 }
12 }

1
2
2.5
2.5
2.0
Infinity
NaN
Exception in thread "main" java.lang.ArithmeticException: / by zero

at Aritmetica.main(Aritmetica.java :7)

3.10 Overflow e Underflow

Em Java, o resultado da operação 2147483647+1 é do tipo int, pois os valores literais 2147483647
e 1 são do tipo int. Matematicamente, o resultado dessa operação é 2147483648. Contudo, o maior
valor aceito pelo tipo int é 2147483647. Nesse caso, a operação 2147483647+1 gera um overflow e o
valor obtido é −2147483648. Analogamente, como o menor valor aceito pelo tipo int é −2147483648,
a operação −2147483648−1 causa um underflow e o seu resultado é 2147483647.

1 System.out.println (2147483647 + 1); // overflow: -2147483648
2 System.out.println (-2147483648 - 1); // underflow: 2147483647

Lembrando que o menor valor aceito pelo tipo long é Long.MIN_VALUE e o maior é Long.MAX_VALUE, as
operações do exemplo abaixo causam underflow e overflow.

1 System.out.println(Long.MIN_VALUE - 1); // underflow: 9223372036854775807
2 System.out.println(Long.MAX_VALUE + 1); // overflow: -9223372036854775808

Nas operações aritméticas envolvendo valores do tipo float ou double, também pode ocorrer over-
flow ou underflow. No overflow, o resultado pode ser ±inifinito. No underflow, o resultado pode ser
±0.

96 www.k19.com.br

97 OPERADORES

1 System.out.println(Float.MAX_VALUE * 2); // overflow: Infinity
2 System.out.println(-Float.MAX_VALUE * 2); // overflow: -Infinity
3 System.out.println(Float.MIN_VALUE / 2); // underflow: 0.0
4 System.out.println(-Float.MIN_VALUE / 2); // underflow: -0.0
5
6 System.out.println(Double.MAX_VALUE * 2); // overflow: Infinity
7 System.out.println(-Double.MAX_VALUE * 2); // overflow: -Infinity
8 System.out.println(Double.MIN_VALUE / 2); // underflow: 0.0
9 System.out.println(-Double.MIN_VALUE / 2); // underflow: -0.0

Armadilha

Considere um cartão de memória com velocidade de gravação máxima igual a 270
MB/s. Essa velocidade equivale a (270 * 1000 * 1000 * 8) bits/s, ou seja, 2160000000 bits/s. Esse
valor não pode ser armazenado em uma variável do tipo int, mas pode ser armazenado em uma
variável do tipo long.

No exemplo abaixo, o valor da expressão 270 * 1000 * 1000 * 8 foi armazenado na variável velocidade,
que é do tipo long. Como essa expressão é composta somente por valores do tipo int, o resultado
dela é do tipo int. O valor 2160000000 não pode ser representado com o tipo int. Dessa forma,
ocorre overflow e o resultado é −2134967296.

1 long velocidade = 270 * 1000 * 1000 * 8; // -2134967296

Para resolver esse problema, os valores da expressão devem ser do tipo long para que o resultado
seja do tipo long e não ocorra overflow.

1 long velocidade = 270L * 1000L * 1000L * 8L; // 2160000000

Importante

Em Java, o overflow ou o underflow não geram erros formais. Em outras palavras, a
linguagem Java não possui nenhum mecanismo para avisar o programador que um desses pro-
blemas ocorreu. Dessa forma, o programador deve estar sempre atento para evitar erros de
lógica causados pelo overflow ou pelo underflow.

Simulação

Nessa simulação, mostraremos um exemplo de overflow e de underflow.

1 Ao executar a classe OverflowUnderflow, a primeira linha do método main será processada. Nessa
linha, o valor 1 é adicionado ao maior valor do tipo int. Como o resultado dessa operação ultrapassa
o valor máximo do tipo int, ocorre um overflow e o resultado dessa operação será −2147483648.

1 class OverflowUnderflow {
2 public static void main(String [] args) {
3 System.out.println(Integer.MAX_VALUE + 1);
4 System.out.println(Integer.MIN_VALUE - 1);
5 }
6 }

www.facebook.com/k19treinamentos 97

OPERADORES 98

-2147483648

2 Em seguida, a linha 4 é executada. Nessa linha, o valor 1 é subtraído do menor valor do tipo int.
Como o resultado dessa operação é menor do que o limite mínimo do tipo int, ocorre um underflow
e o resultado dessa operação será 2147483647.

1 class OverflowUnderflow {
2 public static void main(String [] args) {
3 System.out.println(Integer.MAX_VALUE + 1);
4 System.out.println(Integer.MIN_VALUE - 1);
5 }
6 }

-2147483648
2147483647

3.11 Regras para Operações Aritméticas com Valores Especiais

Os resultados das operações aritméticas com float ou double envolvendo os valores ±Infinity, ±0
e NaN seguem as seguintes regras:

• Se pelo menos um dos operandos for NaN, o resultado será NaN.

• A soma de infinitos de sinais opostos é NaN.

• A soma de +Infinity com +Infinity é +Infinity, assim como a soma de −Infinity com −Infinity é
−Infinity.

• A soma de +Infinity com um valor finito é +Infinity, assim como a soma de −Infinity com um
valor finito é −Infinity.

• A soma de zeros de sinais opostos é +0.

• A soma de +0 com +0 é +0, assim como a soma de −0 com −0 é −0.

• Tanto na multiplicação quanto na divisão, o sinal do resultado é determinado como na Mate-
mática.

• Multiplicar ±Infinity por 0 resulta em NaN.

• Multiplicar ±Infinity por ±Infinity resulta em ±Infinity.

• Dividir ±Infinity por ±Infinity resulta em NaN.

• Dividir ±Infinity por um valor finito resulta em ±Infinity.

• Dividir um valor finito por ±Infinity resulta em ±0.

• Dividir ±0 por ±0 resulta NaN.

• Dividir ±0 por um valor finito diferente de ± 0 resulta em ± 0.

• Dividir um valor finito diferente de ± 0 por ± 0 resulta em ±Infinity.

• Nas operações de módulo, o sinal do resultado é o sinal do dividendo.

• Nas operações de módulo, se o dividendo for ±Infinity ou o divisor for ±0, o resultado é NaN.

• Nas operações de módulo, se o dividendo for ±Infinity e o divisor for ±Infinity, o resultado é
igual ao dividendo.

• Nas operações de módulo, se o dividendo for ±0 e o divisor finito, o resultado é igual ao divi-
dendo.

98 www.k19.com.br

99 OPERADORES

3.12 Concatenação de Strings

Como vimos anteriormente, o operador + é utilizado para realizar a operação aritmética de adi-
ção. Mas, ele também pode ser utilizado para concatenar strings.

1 String s1 = "Marcelo";
2 String s2 = " ";
3 String s3 = "Martins";
4
5 // "Marcelo Martins"
6 String s4 = s1 + s2 + s3;

No exemplo abaixo, o operador + foi aplicado a valores do tipo int e do tipo String. Nesses casos,
os valores do tipo int são automaticamente convertidos para String e a concatenação é realizada.
Analogamente, essa conversão ocorrerá toda vez que o operador + for aplicado a valores que não são
do tipo String com valores que são do tipo String.

1 String s1 = "Idade: ";
2 int idade = 30;
3
4 // "Idade: 30"
5 String s2 = s1 + idade;

Pare para pensar...

As expressões são avaliadas da esquerda para a direita. Dessa forma, considere o se-
guinte trecho de código:

1 System.out.println (1 + 2 + 3 + " testando");
2 System.out.println("testando" + 1 + 2 + 3);

O que seria exibido nesse caso?

Pare para pensar...

Como vimos, quando um dos operandos do operador + é do tipo String, a operação que
será realizada é a de concatenação. Caso contrário, a operação que será efetuada é a adição
aritmética. Dessa forma, o que seria exibido na saída padrão com o código abaixo?

1 System.out.println(’a’ + ’a’);

Simulação

Nessa simulação, realizaremos operações de concatenação.

1 Ao executar a classe Concatenacoes, a primeira linha do método main será processada. Nessa linha,
uma variável chamada s do tipo String será associada à string “K”.

www.facebook.com/k19treinamentos 99

OPERADORES 100

1 class Concatenacoes {
2 public static void main(String [] args) {
3 String s = "K";
4 s = "Cursos " + s;
5 s = s + 19;
6 System.out.println(s);
7 }
8 }

s = “K”

2 Em seguida, a linha 4 será executada e a string “Cursos ” será concatenada à esquerda da string
“K”. Essa concatenação produz a string “Cursos K”. Essa string é associada à variável s através do
operador =.

1 class Concatenacoes {
2 public static void main(String [] args) {
3 String s = "K";
4 s = "Cursos " + s;
5 s = s + 19;
6 System.out.println(s);
7 }
8 }

s = “Cursos K”

3 Na sequência, a linha 5 é executada. O literal 19, que é do tipo int, é convertido automaticamente
para String. Em seguida, a string “19” é concatenada à direita da string “Cursos K”. Essa concatenação
produz a string “Cursos K19”. Essa string é associada à variável s através do operador =.

1 class Concatenacoes {
2 public static void main(String [] args) {
3 String s = "K";
4 s = "Cursos " + s;
5 s = s + 19;
6 System.out.println(s);
7 }
8 }

s = “Cursos K19”

4 Por fim, a linha 6 será executada e a mensagem “Cursos K19” será exibida na saída padrão.

1 class Concatenacoes {
2 public static void main(String [] args) {
3 String s = "K";
4 s = "Cursos " + s;
5 s = s + 19;
6 System.out.println(s);
7 }
8 }

s = “Cursos K19”

Cursos K19

100 www.k19.com.br

101 OPERADORES

3.13 Operadores Unários + e -

O operador unário + preserva o sinal dos valores numéricos enquanto o operador unário - inverte
o sinal desses valores. O resultado gerado por esses operadores segue as seguintes regras.

• O resultado é do tipo int quando o operando é do tipo byte, short, char, int, Byte, Short, Character
ou Integer.

• O resultado é do tipo long quando o operando é do tipo long ou Long.

• O resultado é do tipo float quando o operando é do tipo float ou Float.

• O resultado é do tipo double quando o operando é do tipo double ou Double.

1 System.out.println (+1); // exibe: 1
2 System.out.println (-1); // exibe: -1

3.14 Exercícios de Fixação

8 Na pasta operadores, crie um arquivo chamado OperadoresAritmeticos.java. Complete o código a
seguir com os operadores aritméticos da linguagem Java. Não utilize operadores repetidos. O pro-
grama deve exibir os números 11, 8, 60, 5 e 2 nessa ordem.

1 class OperadoresAritmeticos {
2 public static void main(String [] args) {
3 int a = 10 1;
4 int b = 10 2;
5 int c = 20 3;
6 int d = 25 5;
7 int e = 10 4;
8
9 System.out.println(a);
10 System.out.println(b);
11 System.out.println(c);
12 System.out.println(d);
13 System.out.println(e);
14 }
15 }

Código Java 3.64: OperadoresAritmeticos.java

9 Através do terminal, entre na pasta operadores; compile o arquivo OperadoresAritmeticos.java; e
execute o programa.

10 Na pasta operadores, crie um arquivo chamado TiposDeResultado.java. Complete o código a seguir
com os tipos primitivos numéricos da linguagem Java. Utilize sempre o tipo que ocupa o menor
espaço na memória.

1 class TiposDeResultado {
2 public static void main(String [] args) {
3 byte a = 1;
4 short b = 2;
5 double c = 3.14;

www.facebook.com/k19treinamentos 101

OPERADORES 102

6
7 d = a + b;
8 e = b + c;
9
10 System.out.println(d);
11 System.out.println(e);
12 }
13 }

Código Java 3.65: TiposDeResultado.java

11 Através do terminal, entre na pasta operadores; compile o arquivo TiposDeResultado.java; e execute
o programa.

12 Na pasta operadores, crie um arquivo chamado DivisaoInteiraReal.java. Complete o código com
operações de divisão, operações de casting e parênteses. O programa deve exibir os números 2, 2.5,
2.5, 2.5 e 2.0 nessa ordem. A cada linha complete o código de uma forma diferente. Não é necessário
completar todas as lacunas.

1 class DivisaoInteiraReal {
2 public static void main(String [] args) {
3 int a = 5;
4 int b = 2;
5
6 System.out.println(a b);
7 System.out.println(a b);
8 System.out.println(a b);
9 System.out.println(a b);
10 System.out.println(a b);
11 }
12 }

Código Java 3.66: DivisaoInteiraReal.java

13 Através do terminal, entre na pasta operadores; compile o arquivo DivisaoInteiraReal.java; e exe-
cute o programa.

14 Na pasta operadores, crie um arquivo chamado OverflowUnderflow.java. Complete o código com
valores literais. O programa deve exibir os números −2147483648 e 2147483647 nessa ordem.

1 class OverflowUnderflow {
2 public static void main(String [] args) {
3 System.out.println(+ 1);
4 System.out.println(- 1);
5 }
6 }

Código Java 3.67: OverflowUnderflow.java

15 Através do terminal, entre na pasta operadores; compile o arquivo OverflowUnderflow.java; e exe-
cute o programa.

102 www.k19.com.br

103 OPERADORES

16 Na pasta operadores, crie um arquivo chamado Concatenacao.java. Complete o código com ope-
rações de concatenação e parênteses. O programa deve exibir as mensagens “Java123”, “Java6”,
“123Java” e “6Java” nessa ordem. Não é necessário completar todas as lacunas.

1 class Concatenacao {
2 public static void main(String [] args) {
3 System.out.println("Java" 1 2 3);
4 System.out.println("Java" 1 2 3);
5 System.out.println(1 2 3 "Java");
6 System.out.println(1 2 3 "Java");
7 }
8 }

Código Java 3.68: Concatenacao.java

17 Através do terminal, entre na pasta operadores; compile o arquivo Concatenacao.java; e execute o
programa.

3.15 Operadores de Atribuição

Um operador de atribuição altera o valor armazenado em uma variável. Nas operações de atri-
buição, o primeiro operando é sempre uma variável.

• = (atribuição simples)

• += (incremental)

• -= (decremental)

• *= (multiplicativa)

• /= (divisória)

• %= (modular)

• ++ (incremento)

• -- (decremento)

Confira abaixo alguns exemplos de utilização desses operadores.

1 int valor = 1;
2
3 valor += 2; // valor = 3
4
5 valor -= 1; // valor = 2
6
7 valor *= 6; // valor = 12
8
9 valor /= 3; // valor = 4
10
11 valor %= 3; // valor = 1
12
13 valor ++; // valor = 2
14
15 valor --; // valor = 1

Código Java 3.69: Exemplo de uso dos operadores de atribuição

www.facebook.com/k19treinamentos 103

OPERADORES 104

Os operadores de atribuição +=, -=, *=, /=, %=, ++ e -- são chamados de operadores compostos,
pois além de modificar o valor de uma variável, eles realizam uma operação aritmética. Nas instru-
ções com os operadores de atribuição compostos, há uma operação de casting implícita. Assim, as
instruções do exemplo acima são equivalentes às instruções do código abaixo.

1 int valor = 1;
2
3 valor = (int)(valor + 2); // valor = 3
4
5 valor = (int)(valor - 1); // valor = 2
6
7 valor = (int)(valor * 6); // valor = 12
8
9 valor = (int)(valor / 3); // valor = 4
10
11 valor = (int)(valor % 3); // valor = 1
12
13 valor = (int)(valor + 1); // valor = 2
14
15 valor = (int)(valor - 1); // valor = 1

Código Java 3.70: Utilizando os operadores aritméticos

Os operadores de atribuição compostos reduzem a quantidade de código escrito. Eles funcionam
como “atalhos” para realizar operações aritméticas em conjunto com operações de atribuição.

Mais Sobre

Qual é o resultado de uma operação de atribuição? O resultado de uma operação de
atribuição é o valor do segundo operando. No exemplo abaixo, a operação a = 1 devolve o valor
1 do tipo int.

1 int a;
2
3 System.out.println(a = 1); // exibe: 1

Código Java 3.71: Utilizando os operadores aritméticos

Simulação

Nessa simulação, mostraremos um exemplo de utilização dos operadores de atribuição.

1 Ao executar a classe Atribuicao, a primeira linha do método main será processada. Nessa linha,
uma variável chamada a do tipo int é declarada e inicializada com o valor 7.

1 class Atribuicao {
2 public static void main(String [] args) {
3 int a = 7;
4 a += 3;
5 a *= 2;
6 a++;
7 a -= 1.82;
8 System.out.println(a);
9 }
10 }

a = 7

104 www.k19.com.br

105 OPERADORES

2 Em seguida, a linha 4 é executada. Utilizando o operador +=, o valor 3 é adicionado ao valor da
variável a. O resultado dessa operação é armazenado na própria variável a. Dessa forma, depois da
execução dessa linha, o valor contido nessa variável será 10.

1 class Atribuicao {
2 public static void main(String [] args) {
3 int a = 7;
4 a += 3;
5 a *= 2;
6 a++;
7 a -= 1.82;
8 System.out.println(a);
9 }
10 }

a = 10

3 Na sequência, a linha 5 é executada. Utilizando o operador *=, o valor armazenado na variável a
é multiplicado por 2. O resultado dessa operação é armazenado na própria variável a. Dessa forma,
após a execução dessa linha, o valor contido nessa variável será 20.

1 class Atribuicao {
2 public static void main(String [] args) {
3 int a = 7;
4 a += 3;
5 a *= 2;
6 a++;
7 a -= 1.82;
8 System.out.println(a);
9 }
10 }

a = 20

4 Agora, a linha 6 é executada. Utilizando o operador ++, o valor 1 é adicionado ao valor armaze-
nado na variável a. Dessa forma, depois dessa linha, o valor contido nessa variável será 21.

1 class Atribuicao {
2 public static void main(String [] args) {
3 int a = 7;
4 a += 3;
5 a *= 2;
6 a++;
7 a -= 1.82;
8 System.out.println(a);
9 }
10 }

a = 21

5 Continuando a execução, a linha 7 será processada. A operação a -= 1.82 é equivalente à ex-
pressão a = (int)(a - 1.82). O resultado da subtração a -1.82 é 19.18. O casting desse valor produz o
número 19, que é armazenado na variável a.

www.facebook.com/k19treinamentos 105

OPERADORES 106

1 class Atribuicao {
2 public static void main(String [] args) {
3 int a = 7;
4 a += 3;
5 a *= 2;
6 a++;
7 a -= 1.82;
8 System.out.println(a);
9 }
10 }

a = 19

6 Por fim, a linha 8 é executada e o valor da variável a é exibido na saída padrão.

1 class Atribuicao {
2 public static void main(String [] args) {
3 int a = 5;
4 a += 3;
5 a *= 2;
6 a++;
7 a -= 1.82;
8 System.out.println(a);
9 }
10 }

a = 19

19

3.16 Operadores de Comparação

Muitas vezes precisamos determinar a equivalência entre dois valores ou a relação de grandeza
(se é maior ou menor) entre eles. Nessas situações, utilizamos os operadores de comparação (tam-
bém chamados de operadores relacionais). As operações realizadas com os operadores relacionais
devolvem valores do tipo boolean. Os operadores relacionais são:

• == (igualdade)

• != (desigualdade)

• < (menor)

• <= (menor ou igual)

• > (maior)

• >= (maior ou igual)

1 int valor = 2;
2 boolean b;
3 b = (valor == 2); // b = true
4 b = (valor != 2); // b = false
5 b = (valor < 2); // b = false
6 b = (valor <= 2); // b = true
7 b = (valor > 1); // b = true
8 b = (valor >= 1); // b = true

Código Java 3.78: Exemplo de uso dos operadores relacionais em Java

Os operandos das operações <, <=, > e >= podem ser tanto valores de tipos primitivos numéricos
quanto valores de tipos não primitivos numéricos (ver Tabela 2.3). Se um operando for de um tipo

106 www.k19.com.br

107 OPERADORES

não primitivo numérico, então, antes da comparação ser efetuada, o seu valor é convertido para o
tipo primitivo numérico correspondente através do autoboxing.

1 int i = 1;
2 long l = 2L;
3 Float f = 3.0F;
4 Double d = 4.0;
5 boolean b;
6 b = (i < l); // b = true
7 b = (l <= f); // b = true
8 b = (f > d); // b = false
9 b = (d >= i); // b = true

Código Java 3.79: Exemplo de uso dos operadores relacionais em Java

Já os operadores == e != podem ser usados para comparar:

• Dois valores primitivos numéricos.

• Um valor primitivo numérico e um valor do tipo Byte, Short, Character, Integer, Long, Float ou
Double. Nesse caso, o valor não primitivo numérico é convertido para o valor primitivo corres-
pondente antes da comparação através do autoboxing.

• Dois valores do tipo boolean.

• Um valor do tipo boolean e um valor do tipo Boolean. Nesse caso, o valor do tipo Boolean é con-
vertido para o tipo boolean através do autoboxing.

• Dois valores não primitivos.

Mais Sobre

Nas operações com ==, <, <=, > e >=, se pelo menos um dos operandos for NaN então
o resultado é false. Por outro lado, com o operador !=, se um dos operandos for NaN então o
resultado é true.

Mais Sobre

O valor −0 é considerado igual ao valor +0.

Simulação

Nessa simulação, mostraremos um exemplo de utilização dos operadores de comparação.

1 Ao executar a classe Comparacoes, a primeira linha do método main será processada. Nessa linha,
uma variável chamada a do tipo int é declarada e inicializada com o valor 1.

1 class Comparacoes {
2 public static void main(String [] args) {
3 int a = 1;
4 System.out.println(a == 1);
5 System.out.println(a > 5);
6 System.out.println(a <= 3);
7 }
8 }

a = 1

www.facebook.com/k19treinamentos 107

OPERADORES 108

2 Na sequência, a linha 4 será executada. O operador == foi utilizado para verificar se o valor
armazenado na variável a é igual a 1. Como a variável a armazena o valor 1, essa operação devolve
true.

1 class Comparacoes {
2 public static void main(String [] args) {
3 int a = 1;
4 System.out.println(a == 1);
5 System.out.println(a > 5);
6 System.out.println(a <= 3);
7 }
8 }

a = 1

true

3 Na sequência, a linha 5 será executada. O operador > foi utilizado para verificar se o valor arma-
zenado na variável a é maior do que 5. Como a variável a armazena o valor 1, essa operação devolve
false.

1 class Comparacoes {
2 public static void main(String [] args) {
3 int a = 1;
4 System.out.println(a == 1);
5 System.out.println(a > 5);
6 System.out.println(a <= 3);
7 }
8 }

a = 1

true
false

4 Em seguida, a linha 6 será executada. O operador <= foi utilizado para verificar se o valor armaze-
nado na variável a é menor ou igual a 3. Como a variável a armazena o valor 1, essa operação devolve
true.

1 class Comparacoes {
2 public static void main(String [] args) {
3 int a = 1;
4 System.out.println(a == 1);
5 System.out.println(a > 5);
6 System.out.println(a <= 3);
7 }
8 }

a = 1

true
false
true

3.17 Operadores Lógicos

Considere um jogo de dados no qual o jogador faz dois lançamentos de dado. Se o resultado do
primeiro lançamento for menor do que 3 e o resultado do segundo for maior do 4, o jogador ganha.
Caso contrário, ele perde. Suponha que o resultado do primeiro lançamento seja armazenado em
uma variável chamada a e o resultado do segundo em uma variável chamada b.

108 www.k19.com.br

109 OPERADORES

Como verificar se o jogador ganhou? Podemos utilizar um operador lógico. Os operadores lógicos
da linguagem Java são:

• & (E simples)

• && (E duplo)

• | (OU simples)

• || (OU duplo)

• ˆ (OU exclusivo)

Os operandos de uma operação lógica são valores do tipo boolean ou Boolean. Valores do tipo
Boolean são convertidos para boolean através do autoboxing. O resultado de uma operação lógica é
um valor do tipo boolean.

• Os operadores & (E simples) e && (E duplo) devolvem true se e somente se as duas condições
forem true.

1 int a = (int)(Math.random () * 6 + 1);
2 int b = (int)(Math.random () * 6 + 1);
3 System.out.println(a < 3 & b > 4);
4 System.out.println(a < 3 && b > 4);

Código Java 3.84: Exemplo de uso dos operadores & e &&

A tabela verdade é uma forma prática de visualizar o resultado dos operadores lógicos. Veja a
seguir a tabela verdade dos operadores & e &&.

a < 3 b > 4 a < 3 & b > 4 a < 3 && b > 4
V V V V
V F F F
F V F F
F F F F

Tabela 3.4: Tabela verdade dos operadores & e &&

• Considere agora uma mudança nas regras do jogo. Suponha que o jogador ganha se no pri-
meiro lançamento o resultado for menor do que 3 ou no segundo lançamento o resultado for
maior do que 4. Para verificar se o jogador ganha o jogo, podemos usar os operadores OU. Os
operadores | (OU simples) e || (OU duplo) devolvem true se pelo menos uma das condições
for true.

1 int a = (int)(Math.random () * 6 + 1);
2 int b = (int)(Math.random () * 6 + 1);
3 System.out.println(a < 3 | b > 4);
4 System.out.println(a < 3 || b > 4);

Código Java 3.85: Exemplo de uso dos operadores | e ||

Também, podemos utilizar a tabela verdade para visualizar o resultado dos operadores | e ||.

www.facebook.com/k19treinamentos 109

OPERADORES 110

a < 3 b > 4 a < 3 | b > 4 a < 3 || b > 4
V V V V
V F V V
F V V V
F F F F

Tabela 3.5: Tabela verdade dos operadores | e ||

• Agora, suponha que o jogador ganha o jogo se uma das situações abaixo ocorrer:

(i) No primeiro lançamento, o resultado é menor do que 3 e, no segundo lançamento, o
resultado não é maior do que 4.

(ii) No primeiro lançamento, o resultado não é menor do que 3 e, no segundo lançamento, o
resultado é maior do que 4.

Nesse tipo de jogo, podemos utilizar o operador OU exclusivo para verificar se o jogador é
vencedor. O operador ˆ (OU exclusivo) devolve true se e somente se exatamente uma das con-
dições for true (ou seja, uma delas deve ser true e a outra deve ser false).

1 int a = (int)(Math.random () * 6 + 1);
2 int b = (int)(Math.random () * 6 + 1);
3 System.out.println(a < 3 ^ b > 4);

Código Java 3.86: Exemplo de uso do operador ˆ

Vamos visualizar o resultado do operador ˆ através da tabela verdade.

a < 3 b > 4 a < 3 ˆ b > 4
V V F
V F V
F V V
F F F

Tabela 3.6: Tabela verdade do operador ˆ

Os operadores & e && produzem o mesmo resultado. Então, qual é a diferença entre eles? O opera-
dor & sempre avalia as duas condições. Por outro lado, o operador && não avalia a segunda condição
se o valor da primeira condição for false. De fato, esse comportamento é plausível, pois se o valor da
primeira condição for false, o resultado da operação é false independentemente do valor da segunda
condição. Dessa forma, podemos simplificar a tabela verdade do operador &&.

a < 3 b > 4 a < 3 && b > 4
V V V
V F F
F ? F

Tabela 3.7: Tabela verdade do operador &&

Analogamente, podemos deduzir a diferença entre os operadores | e ||. As duas condições sem-
pre são avaliadas quando utilizamos o operador |. Agora, quando utilizamos o operador ||, a se-
gunda condição é avaliada se e somente se o valor da primeira condição for false. Realmente, esse

110 www.k19.com.br

111 OPERADORES

comportamento é aceitável, pois o resultado da operação é true quando o valor da primeira condi-
ção for true independentemente do valor da segunda condição. Dessa forma, podemos simplificar a
tabela verdade do operador ||.

a < 3 b > 4 a < 3 || b > 4
V ? V
F V V
F F F

Tabela 3.8: Tabela verdade do operador ||

Pare para pensar...

Considerando o comportamento dos operadores lógicos &, &&, | e ||, o que seria exibido
com as seguintes instruções?

1 int i = 10;
2
3 System.out.println(i > 100 & i++ < 500);
4 System.out.println(i > 100 && i++ < 500);
5 System.out.println(i > 0 | i++ < 500);
6 System.out.println(i > 0 || i++ < 500);
7 System.out.println(i);

Pare para pensar...

A linguagem Java possui os operadores lógicos & e &&. Também possui os operadores | e
||. Agora, a pergunta que não quer calar: por quê não existe o operador ˆˆ?

Simulação

Nessa simulação, mostraremos um exemplo de utilização dos operadores lógicos.

1 Ao executar a classe Logicos, a primeira linha do método main será processada. Nessa linha, uma
variável chamada a do tipo int é declarada e inicializada com o valor 2.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

2 Na sequência, a linha 4 será executada e uma variável chamada b do tipo int é declarada e
inicializada com o valor 10.

www.facebook.com/k19treinamentos 111

OPERADORES 112

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

3 Agora, na linha 5, a operação a > 0 será executada. Como o valor armazenado na variável a é 2,
o resultado dessa operação será true.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

4 Em seguida, ainda na linha 5, o operador || devolverá true sem avaliar o lado direito (b < 0) pois,
como vimos no passo anterior, o lado esquerdo (a > 0) devolveu true.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

5 Para finalizar a linha 5, o resultado da expressão a > 0 || b < 0, que é true, será exibido na saída
padrão.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

true

6 Em seguida, na linha 6, a operação a == 2 será executada. Como a variável a armazena o valor 2,
o resultado dessa operação é true.

112 www.k19.com.br

113 OPERADORES

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

true

7 Na sequência, ainda na linha 6, como o lado esquerdo (a == 2) do operador && é true, o lado
direito (b != 10) desse operador deve ser avaliado. Como a variável b armazena o valor 10, o resultado
de b != 10 é false.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

true

8 Continuando na linha 6, o operador && devolverá o valor false pois, como vimos no passo ante-
rior, o lado direito (b != 10) devolveu false.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

true

9 Para finalizar a linha 6, o resultado da expressão a == 2 && b != 10, que é false, será exibido na
saída padrão.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

true
false

www.facebook.com/k19treinamentos 113

OPERADORES 114

10 Agora, na linha 7, a operação a <= 0 será executada. Como a variável a armazena o valor 2, o
resultado dessa operação é false.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

true
false

11 Em seguida, ainda linha 7, a operação b >= 1 será executada. Como a variável b armazena o valor
10, o resultado dessa operação é true.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

true
false

12 Continuando na linha 7, o operador ˆ devolverá true pois, como vimos nos passos anteriores, o
lado esquerdo (a <= 0) é false e o lado direito (b >= 1) é true.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

true
false

13 Para finalizar a linha 7, o resultado da expressão a <= 0 ˆ b >= 1, que é true, será exibido na saída
padrão.

1 class Logicos {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a > 0 || b < 0);
6 System.out.println(a == 2 && b != 10);
7 System.out.println(a <= 0 ^ b >= 1);
8 }
9 }

a = 2

b = 10

114 www.k19.com.br

115 OPERADORES

true
false
true

3.18 Exercícios de Fixação

18 Na pasta operadores, crie um arquivo chamado OperadoresDeAtribuicao.java. Complete o código
com operações de atribuição. O programa deve exibir os valores 1, 3, 2, 6, 3, 1, 2 e 1 nessa ordem.
Não utilize o mesmo operador duas ou mais vezes.

1 class OperadoresDeAtribuicao {
2 public static void main(String [] args) {
3 int a 1;
4 System.out.println(a);
5
6 a 2;
7 System.out.println(a);
8
9 a 1;
10 System.out.println(a);
11
12 a 3;
13 System.out.println(a);
14
15 a 2;
16 System.out.println(a);
17
18 a 2;
19 System.out.println(a);
20
21 a ;
22 System.out.println(a);
23
24 a ;
25 System.out.println(a);
26 }
27 }

Código Java 3.101: OperadoresDeAtribuicao.java

19 Através do terminal, entre na pasta operadores; compile o arquivo OperadoresDeAtribuicao.java; e
execute o programa.

20 Na pasta operadores, crie um arquivo chamado OperadoresRelacionais.java. Complete o código
com operações de comparação. O programa deve exibir os valores false, false, true, true, false e true

nessa ordem. Não utilize o mesmo operador duas ou mais vezes.

1 class OperadoresRelacionais {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5
6 System.out.println(a b);
7 System.out.println(a b);
8 System.out.println(a b);
9 System.out.println(a b);
10 System.out.println(a b);
11 System.out.println(a b);

www.facebook.com/k19treinamentos 115

OPERADORES 116

12 }
13 }

Código Java 3.102: OperadoresRelacionais.java

21 Através do terminal, entre na pasta operadores; compile o arquivo OperadoresRelacionais.java; e
execute o programa.

22 Na pasta operadores, crie um arquivo chamado OperadoresLogicos.java. Complete o código com
operações lógicas. O programa deve exibir os valores true, true, false, false e true nessa ordem. Não
utilize duas vezes o mesmo operador lógico. Não utilize o mesmo operador duas ou mais vezes.

1 class OperadoresLogicos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = 3;
6 int d = 4;
7
8 System.out.println(a > b c < d);
9 System.out.println(a > b c < d);
10 System.out.println(a > b c < d);
11 System.out.println(a > b c < d);
12 System.out.println(a > b c < d);
13 }
14 }

Código Java 3.103: OperadoresLogicos.java

23 Através do terminal, entre na pasta operadores; compile o arquivo OperadoresLogicos.java; e exe-
cute o programa.

3.19 Operador Ternário ?:

Considere um programa que controla as notas dos alunos de uma escola. Para exemplificar, va-
mos gerar a nota de um aluno aleatoriamente.

1 double nota = 10.0 * Math.random ();

O programa deve exibir a mensagem “aprovado” se nota de um aluno for maior ou igual a 5 e
“reprovado” se a nota for menor do que 5. Esse problema pode ser resolvido com o operador ternário.

 nota >= 5 ? “aprovado” : “reprovado”

Condição Valor 1 Valor 2

Figura 3.1: Operador ternário

Quando a “condição” (nota >= 5) é true, o operador ternário devolve o primeiro valor ("aprovado").
Caso contrário, devolve o segundo valor ("reprovado"). Podemos guardar o resultado do operador

116 www.k19.com.br

117 OPERADORES

ternário em uma variável ou simplesmente exibi-lo.

1 String resultado = nota >= 5 ? "aprovado" : "reprovado";
2 System.out.println(nota >= 5 ? "aprovado" : "reprovado");

No exemplo anterior, o operador ternário foi utilizado com valores do tipo String. Contudo, po-
demos utilizá-lo com qualquer tipo de valor. Veja o exemplo a seguir.

1 int i = nota >= 5 ? 1 : 2;
2 double d = nota >= 5 ? 0.1 : 0.2;

3.20 Operador de Negação

Valores booleanos podem ser invertidos com o operador de negação !, ou seja, o valor true pode
ser substituído por false e vice-versa. Por exemplo, podemos verificar se uma variável do tipo double

armazena um valor maior do que 5 de duas formas diferentes. A primeira delas verifica diretamente
se o número é maior do que 5 com o uso do operador >.

1 d > 5

A segunda forma utiliza o operador de negação e verifica se o número não é menor ou igual a 5.

1 !(d <= 5)

Simulação

Nessa simulação, mostraremos um exemplo de utilização do operador ternário e do operador de
negação.

1 Ao executar a classe TernarioNegacao, a primeira linha do método main será processada. Nessa
linha, uma variável chamada nota do tipo double é declarada e inicializada com o valor 6.3.

1 public class TernarioNegacao {
2 public static void main(String [] args) {
3 double nota = 6.3;
4 boolean reprovado = !(nota >= 5);
5 String s = reprovado ? "REPROVADO" : "APROVADO";
6 System.out.println(s);
7 }
8 }

nota = 6.3

2 Em seguida, na linha 4, a operação nota >= 5 é executada. Como a variável nota armazena o valor
6.3, o resultado dessa operação é true.

www.facebook.com/k19treinamentos 117

OPERADORES 118

1 public class TernarioNegacao {
2 public static void main(String [] args) {
3 double nota = 6.3;
4 boolean reprovado = !(nota >= 5);
5 String s = reprovado ? "REPROVADO" : "APROVADO";
6 System.out.println(s);
7 }
8 }

nota = 6.3

3 Ainda na linha 4, o operador de negação é aplicado ao resultado da operação nota >= 5. Como
vimos no passo anterior, essa operação devolveu true. Dessa forma, a expressão !(nota >= 5) devolve
false. Esse valor é armazenado na variável reprovado.

1 public class TernarioNegacao {
2 public static void main(String [] args) {
3 double nota = 6.3;
4 boolean reprovado = !(nota >= 5);
5 String s = reprovado ? "REPROVADO" : "APROVADO";
6 System.out.println(s);
7 }
8 }

nota = 6.3

reprovado = false

4 Agora, na linha 5, o operador ternário é utilizado. Como o valor armazenado na variável reprovado
é false, esse operador devolve “APROVADO”. Essa string é associada à variável s.

1 public class TernarioNegacao {
2 public static void main(String [] args) {
3 double nota = 6.3;
4 boolean reprovado = !(nota >= 5);
5 String s = reprovado ? "REPROVADO" : "APROVADO";
6 System.out.println(s);
7 }
8 }

nota = 6.3

reprovado = false

s = “APROVADO”

5 Por fim, a linha 6 é executada e a mensagem “APROVADO” é exibida na saída padrão.

1 public class TernarioNegacao {
2 public static void main(String [] args) {
3 double nota = 6.3;
4 boolean reprovado = !(nota >= 5);
5 String s = reprovado ? "REPROVADO" : "APROVADO";
6 System.out.println(s);
7 }
8 }

nota = 6.3

reprovado = false

s = “APROVADO”

APROVADO

3.21 Incremento e Decremento

Os operadores ++ e -- podem ser utilizados de duas formas diferentes, antes ou depois de uma
variável numérica.

118 www.k19.com.br

119 OPERADORES

1 int i = 10;
2 i++; // pós incremento
3 i--; // pós decremento

Código Java 3.114: Pós incremento e pós decremento

1 int i = 10;
2 ++i; // pré incremento
3 --i; // pré decremento

Código Java 3.115: Pré incremento e pré decremento

No primeiro exemplo, o operador ++ foi utilizado à direita da variável i. Já no segundo exemplo,
ele foi utilizado à esquerda da variável i. A primeira forma de utilizar o operador ++ é chamada de
pós incremento. A segunda é chamada de pré incremento. Analogamente, o operador -- foi utilizado
na forma de pós decremento no primeiro exemplo e pré decremento no segundo exemplo.

Mas, qual é a diferença entre pré incremento e pós incremento (ou entre pré decremento e pós
decremento)? As operações de incremento (ou decremento) alteram o valor de uma variável e devol-
vem um valor. Tanto o pré incremento quanto o pós incremento adicionam 1 ao valor armazenado
em uma variável. O pré incremento devolve o valor armazenado na variável após o seu incremento.
O pós incremento, por outro lado, devolve o valor armazenado na variável antes de seu incremento.
O comportamento é análogo para as operações de pré e pós decremento. Vejamos alguns exemplos
a seguir.

www.facebook.com/k19treinamentos 119

OPERADORES 120

1 int i = 10;
2 System.out.println(i++ == 10); // exibe: true
3 System.out.println(i); // exibe: 11

Observe que o operador ++ foi utilizado nas expressões do exemplo acima em conjunto com o
operador ==. Como dois operadores foram utilizados na mesma expressão, você pode ter dúvida em
relação a quem será executado primeiro. O incremento com o operador ++ será realizado antes ou
depois da comparação com o operador ==?

O incremento ocorrerá antes da comparação. Contudo, como o operador ++ foi utilizado na forma
de pós incremento, a operação i++ devolverá o valor antigo da variável i. Dessa forma, a comparação
utilizará o valor armazenado na variável i antes do incremento.

Analogamente, a comparação utilizaria o valor antigo da variável i se o operador -- fosse utilizado
na forma de pós decremento.

Agora, considere a utilização do operador ++ na forma de pré incremento.

1 int i = 10;
2 System.out.println (++i == 10); // exibe: false
3 System.out.println(i); // exibe: 11

Nesse último exemplo, a operação ++i devolverá o valor novo da variável i. Dessa forma, a com-
paração utilizará o valor armazenado na variável i depois do incremento.

Analogamente, a comparação utilizaria o valor novo da variável i se o operador -- fosse utilizado
na forma de pré decremento.

Pare para pensar...

Considere o comportamento do pré incremento, pós incremento, pré decremento e pós
decremento. O que seria exibido no exemplo abaixo?

1 int i = 10;
2 int j = 10;
3
4 System.out.println(i++ == i - 1);
5 System.out.println (++j == j);

120 www.k19.com.br

121 OPERADORES

Simulação

Nessa simulação, mostraremos um exemplo de utilização dos operadores de incremento e de-
cremento.

1 Ao executar a classe IncrementoDecremento, a primeira linha do método main será processada. Nessa
linha, uma variável chamada a do tipo int é declarada e inicializada com o valor 2.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 2

2 Em seguida, a linha 4 será executada. Nessa linha, uma variável chamada b do tipo int é decla-
rada e inicializada com o valor 10.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 2

b = 10

3 Em seguida, na linha 5, a operação a++ será executada. Dessa forma, a variável a passa a armaze-
nar o valor 3. Como o operador ++ foi utilizado na forma de pós incremento, essa operação devolve o
valor antigo da variável a, ou seja, devolve 2.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 3

b = 10

4 Agora, ainda na linha 5, a operação de igualdade a++ == 2 será executada para verificar se o
resultado da operação a++ é igual a 2. No passo anterior, vimos que a operação a++ devolveu 2. Dessa
forma, o resultado da expressão a++ == 2 será true.

www.facebook.com/k19treinamentos 121

OPERADORES 122

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 3

b = 10

5 Continuando na linha 5, o operador lógico || devolverá true sem avaliar o lado direito (b++ == 10)
porque, como vimos no passo anterior, o lado esquerdo (a++ == 2) devolveu true.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 3

b = 10

6 Para finalizar a linha 5, o valor da expressão a++ == 2 || b++ == 10, que é true, será exibido na
saída padrão.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 3

b = 10

true

7 Em seguida, na linha 6, a operação ++a será avaliada. Dessa forma, o valor armazenado na
variável a passa a ser 4. Como o operador ++ foi utilizado na forma de pré incremento, a operação ++a

devolve o novo valor da variável a, ou seja, devolve 4.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println(++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 4

b = 10

122 www.k19.com.br

123 OPERADORES

true

8 Na sequência, ainda na linha 6, a operação de desigualdade ++a < 4 será avaliada. No passo
anterior, vimos que a operação ++a devolveu 4. Dessa forma, a expressão ++a < 4 devolverá false.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println(++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 4

b = 10

true

9 Continuando na linha 6, o operador && devolverá false sem avaliar o lado direito (--b == 10) pois,
como vimos no passo anterior, o lado esquerdo (++a < 4) devolveu false.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println(++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 4

b = 10

true

10 Para finalizar a linha 6, o resultado da expressão ++a < 4 && --b == 10, que é false, será exibido
na saída padrão.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 4

b = 10

true
false

11 Ao executar a linha 7, o valor da variável a será exibido na saída padrão.

www.facebook.com/k19treinamentos 123

OPERADORES 124

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 4

b = 10

true
false
4

12 Por fim, ao executar a linha 8, o valor da variável b será exibido na saída padrão.

1 class IncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 2;
4 int b = 10;
5 System.out.println(a++ == 2 || b++ == 10);
6 System.out.println (++a < 4 && --b == 10);
7 System.out.println(a);
8 System.out.println(b);
9 }
10 }

a = 4

b = 10

true
false
4
10

3.22 Avaliando uma Expressão

A ordem de avaliação das operações de uma expressão determina o resultado dessa expressão.
Por exemplo, considere a expressão 2+ 3∗ 5. Se a operação de adição for efetuada primeiro, o re-
sultado dessa expressão será 40. Por outro lado, se a multiplicação for efetuada antes da adição, o
resultado será 17. Dizemos que essa expressão é ambígua.

Para avaliar uma expressão, devemos primeiramente eliminar qualquer ambiguidade presente
na expressão. Para isso, vamos utilizar a Tabela 3.9.

124 www.k19.com.br

125 OPERADORES

Precedência Operador Operação Desempate

1
++ Pós incremento

Direita → Esquerda
-- Pós decremento

2

++ Pré incremento

Direita → Esquerda

-- Pré decremento
+ Mais unário
- Menos unário
! Negação

(tipo) Casting

3
* Multiplicação

Esquerda → Direita/ Divisão
% Módulo

4
+ Adição

Esquerda → Direita
- Subtração

5

< Menor

Esquerda → Direita
<= Menor ou igual
> Maior
>= Maior ou igual

6
== Igualdade

Esquerda → Direita
!= Diferença

7 & E simples Esquerda → Direita
8 ˆ Ou exclusivo Esquerda → Direita
9 | Ou simples Esquerda → Direita

10 && E duplo Esquerda → Direita
11 || Ou duplo Esquerda → Direita
12 ? : Ternário Direita → Esquerda

13

= Atribuição

Direita → Esquerda

+= Incremental
-= Decremental
*= Multiplicativa
/= Divisória
%= Modular

Tabela 3.9: Precedência de operadores

Importante

O fato de um operador ter precedência sobre outro não significa que ele será executado
primeiro. Por exemplo, de acordo com a Tabela 3.9, o operador de pré incremento (++) possui
precedência sobre o operador de divisão (/). Sabendo disso, considere o código abaixo.

1 class DivisaoPorZero {
2 public static void main(String [] args) {
3 int x = 0;
4 System.out.println (1 / x + ++x);
5 }
6 }

Código Java 3.131: DivisaoPorZero.java

Se a ordem de processamento das operações de uma expressão fosse a mesma da ordem indu-

www.facebook.com/k19treinamentos 125

OPERADORES 126

zida pela precedência, a operação ++x seria executada antes da operação de divisão. Nesse caso,
o código acima não apresentaria erro de execução e exibiria o valor 1.

Contudo, na expressão 1 / x + ++x, a primeira operação realizada é a de divisão. Assim, esse
código produz um erro de execução causado por uma divisão por zero.

De acordo com a Tabela 3.9, o operador de multiplicação tem precedência sobre o operador de
adição. Dessa forma, a multiplicação tem maior prioridade do que a adição. Sendo assim, a expres-
são 2+3∗5 é equivalente à expressão (2+ (3∗5)). Portanto, o resultado dessa expressão é 17.

Agora, considere a expressão 1−1+1. Se a operação de subtração for executada antes da adição,
o resultado será 1. Por outro lado, se a adição for efetuada antes da subtração, o resultado será −1.
Nessa expressão, todos os operadores possuem a mesma precedência. Nesse caso, devemos nos ori-
entar pela última coluna da Tabela 3.9 para determinar qual operador tem maior prioridade. Como
o desempate desses operadores é realizado da esquerda para a direita, a subtração tem maior prio-
ridade do que a adição nessa expressão em particular. Portanto, a expressão 1−1+1 é equivalente à
expressão ((1−1)+1). Logo, o resultado dessa expressão é 1.

Então, para eliminar ambiguidades em uma expressão, devemos acrescentar parênteses de acordo
com a prioridade dos operadores. Vamos exemplificar essa tarefa com a seguinte expressão, onde os
operadores estão destacados com a cor vermelha.

1 + 7 * 3 / 4 / (double)(int)x - y

As operações de casting possuem maior precedência nessa expressão. De acordo com a Ta-
bela 3.9, quando há mais de uma operação de casting, a operação mais à direita possui prioridade
sobre as outras. Dessa forma, devemos adicionar parênteses para envolver essa operação.

1 + 7 * 3 / 4 / (double)((int)x) - y

Considerando os operadores restantes (na cor vermelha), a outra operação de casting possui pri-
oridade. Assim, ela deve ser envolvida com parênteses.

1 + 7 * 3 / 4 / ((double)((int)x)) - y

Agora, há um empate na precedência dos operadores de multiplicação e divisão. Como, nesse
caso, a prioridade é do operador mais à esquerda, a multiplicação é a próxima operação.

1 + (7 * 3) / 4 / ((double)((int)x)) - y

Na sequência, o operador de divisão mais à esquerda possui prioridade sobre os outros.

1 + ((7 * 3) / 4) / ((double)((int)x)) - y

Entre os operadores restantes, o operador de divisão possui prioridade sobre os outros.

126 www.k19.com.br

127 OPERADORES

1 + (((7 * 3) / 4) / ((double)((int)x))) - y

Agora, restam os operadores de adição e de subtração. Como o operador de adição está mais à
esquerda, ele tem prioridade.

(1 + (((7 * 3) / 4) / ((double)((int)x)))) - y

Por fim, o último operador é o de subtração.

((1 + (((7 * 3) / 4) / ((double)((int)x)))) - y)

Ao final desse processo, obtemos uma expressão sem ambiguidade. Agora, basta processar as
operações de acordo com a seguinte regra: executar sempre o par de parênteses interno mais à es-
querda até o valor da expressão ser obtido. Um par de parênteses é formado por um “abre parên-
teses” e um “fecha parênteses”. Dizemos que um par de parênteses é interno se ele não contém
parênteses. No exemplo abaixo, os três pares de parênteses em destaque são internos.

((() ()) ())

Suponha que as variáveis x e y sejam do tipo double e armazenem os valores 4.57 e 2.25, respecti-
vamente. O par de parênteses interno mais à esquerda envolve a expressão 7 * 3.

((1 + (((7 * 3) / 4) / ((double)((int)x)))) - y)

O resultado dessa expressão é 21.

((1 + ((21 / 4) / ((double)((int)x)))) - y)

Agora, o par de parênteses interno mais à esquerda envolve a expressão 21 / 4.

((1 + ((21 / 4) / ((double)((int)x)))) - y)

Como essa é uma divisão entre dois valores inteiros, o resultado dessa expressão é 5.

((1 + (5 / ((double)((int)x)))) - y)

Em seguida, o par de parênteses interno mais à esquerda envolve a expressão (int)x

((1 + (5 / ((double)((int)x)))) - y)

www.facebook.com/k19treinamentos 127

OPERADORES 128

Como o valor de x é 4.57, o resultado dessa expressão é 4.

((1 + (5 / ((double)4))) - y)

Agora, o par de parênteses interno mais à esquerda envolve a expressão (double)4.

((1 + (5 / ((double)4))) - y)

O valor dessa expressão é 4.0.

((1 + (5 / 4.0)) - y)

Em seguida, o par de parênteses interno mais à esquerda envolve a expressão 5 / 4.0.

((1 + (5 / 4.0)) - y)

O valor dessa expressão é 1.25.

((1 + 1.25) - y)

Agora, o par de parênteses a ser processado é o que envolve a expressão 1 + 1.25.

((1 + 1.25) - y)

Como essa expressão é composta por um número do tipo int e um número do tipo double, o valor
dessa expressão é 2.25.

(2.25 - y)

Finalmente, processamos o último par de parênteses da expressão.

(2.25 - y)

Como o valor armazenado em y é 2.25, o valor dessa última expressão é 0.0.

0.0

128 www.k19.com.br

129 OPERADORES

3.23 Exercícios de Fixação

24 Na pasta operadores, crie um arquivo chamado OperadorTernario.java. Complete o código com
o operador ternário. O programa deve exibir a mensagem “a < b” quando o valor da variável a for
menor do que o valor da variável b e “a >= b” caso contrário.

1 class OperadorTernario {
2 public static void main(String [] args) {
3 int a = (int)(Math.random () * 100);
4 int b = (int)(Math.random () * 100);
5
6 System.out.println(a < b);
7 }
8 }

Código Java 3.132: OperadorTernario.java

25 Através do terminal, entre na pasta operadores; compile o arquivo OperadoresLogicos.java; e exe-
cute o programa várias vezes.

26 Na pasta operadores, crie um arquivo chamado OperadorNegacao.java. Complete o código com o
operador de negação e parênteses. O programa deve exibir os valores true e false nessa ordem. Não
é necessário preencher todas as lacunas.

1 class OperadorNegacao {
2 public static void main(String [] args) {
3 int a = 10;
4 int b = 20;
5
6 System.out.println(a < b);
7 System.out.println(a < b);
8 }
9 }

Código Java 3.133: OperadorNegacao.java

27 Através do terminal, entre na pasta operadores; compile o arquivo OperadorNegacao.java; e execute
o programa.

28 Na pasta operadores, crie um arquivo chamado PrePosIncrementoDecremento.java. Complete o có-
digo com os operadores de incremento e decremento. O programa deve exibir os valores 1, 3, 3 e 1
nessa ordem. Não é necessário preencher todas as lacunas.

www.facebook.com/k19treinamentos 129

OPERADORES 130

1 class PrePosIncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 1;
4
5 System.out.println(a);
6 System.out.println(a);
7 System.out.println(a);
8 System.out.println(a);
9 }
10 }

Código Java 3.134: PrePosIncrementoDecremento.java

29 Através do terminal, entre na pasta operadores; compile o arquivo PrePosIncrementoDecremento.java;
e execute o programa.

3.24 Operações com Strings

Algumas operações são específicas para valores do tipo String. A seguir, apresentaremos algumas
dessas operações.

length

O método length da classe String devolve a quantidade de caracteres (comprimento) de uma
string.

1 String s = "Rafael Cosentino";
2
3 int length = s.length ();
4
5 System.out.println(length); // exibe: 16

charAt

O método charAt da classe String recebe um número inteiro como parâmetro. Esse parâmetro
indica a posição de um caractere em uma string. Esse método devolve o caractere nessa posição.
O argumento deve ser um número entre zero e o comprimento da string menos um. Um erro de
execução ocorrerá se um número fora desse intervalo for passado como argumento. Note que um
erro de execução ocorrerá se esse método for utilizado com a string vazia.

1 String s = "Rafael Cosentino";
2
3 char a = s.charAt (0); // obtém o primeiro caractere
4 char b = s.charAt (9); // obtém o décimo caractere
5 char c = s.charAt (15); // obtém o décimo sexto (último) caractere
6
7 System.out.println(a); // exibe: R
8 System.out.println(b); // exibe: s
9 System.out.println(c); // exibe: o

130 www.k19.com.br

131 OPERADORES

contains

O método contains da classe String verifica se uma determinada sequência de caracteres está
contida em uma string. Esse método recebe como parâmetro uma sequência de caracteres e devolve
true se e somente se essa sequência está contida em uma determinada string.

No exemplo abaixo, o método contains é aplicado à string cuja referência está armazenada na
variável s. Como essa string possui a sequência de caracteres “Objetos”, a instrução da linha 6 exibe
“true”. Como essa string não contém a sequência de caracteres “objetos”, a instrução da linha 7 exibe
“false”.

1 String s = "K11 - Orientação a Objetos em Java";
2
3 boolean resultado1 = s.contains("Objetos");
4 boolean resultado2 = s.contains("objetos");
5
6 System.out.println(resultado1); // exibe: true
7 System.out.println(resultado2); // exibe: false

endsWith

É possível verificar se uma string termina com uma determinada sequência de caracteres. Para
isso, podemos usar o método endsWith da classe String. Esse método recebe uma sequência de carac-
teres como parâmetro. Ele devolve true se e somente se uma determinada string termina com essa
sequência de caracteres.

No exemplo a seguir, o método endsWith foi aplicado à string cuja referência está armazenada na
variável s. Como essa string termina com “Java”, a instrução da linha 6 exibe “true”. Como essa string
não termina com “Objetos”, a instrução da linha 7 exibe “false”.

1 String s = "K11 - Orientação a Objetos em Java";
2
3 boolean resultado1 = s.endsWith("Java");
4 boolean resultado2 = s.endsWith("Objetos");
5
6 System.out.println(resultado1); // exibe: true
7 System.out.println(resultado2); // exibe: false

startsWith

É possível também verificar se uma string começa com uma determinada sequência de caracte-
res. Podemos fazer isso com o método startsWith da classe String. Esse método recebe uma sequên-
cia de caracteres como parâmetro. Ele devolve true se e somente se uma determinada string começa
com essa sequência de caracteres.

No exemplo abaixo, o método startsWith é aplicado à string cuja referência está armazenada na
variável s. Como essa string não começa com “Java”, a instrução da linha 6 exibe “false”. Como essa
string começa com “K11”, a instrução da linha 7 exibe “true”.

1 String s = "K11 - Orientação a Objetos em Java";
2

www.facebook.com/k19treinamentos 131

OPERADORES 132

3 boolean resultado1 = s.startsWith("Java");
4 boolean resultado2 = s.startsWith("K11");
5
6 System.out.println(resultado1); // exibe: false
7 System.out.println(resultado2); // exibe: true

replaceAll

Podemos realizar substituições em uma string com o método replaceAll da classe String. Esse
método recebe duas strings como parâmetros e devolve um objeto do tipo String. Considere o exem-
plo abaixo.

1 String s1 = "Matamos o tempo , o tempo nos enterra"; // Machado de Assis
2
3 s1 = s1.replaceAll("o tempo", "um coveiro");
4
5 System.out.println(s1); // exibe: Matamos um coveiro , um coveiro nos enterra

Na linha 3, o método replaceAll substituirá cada ocorrência de “o tempo” na string cuja referência
está em s1 por “um coveiro”. Assim, ele devolve “Matamos um coveiro, um coveiro nos enterra”.

Na verdade, o primeiro parâmetro desse método é uma expressão regular, mas esse assunto está
fora do escopo deste livro.

substring

É possível extrair um trecho de uma string com o método substring da classe String. Há duas
formas de utilizar esse método. Na primeira, ele recebe apenas um parâmetro. Esse parâmetro indica
a posição do primeiro caractere do trecho desejado. O término desse trecho será o último caractere
da string. Veja o exemplo abaixo.

1 String s1 = "Porta corta fogo";
2
3 String s2 = s1.substring (9);
4
5 System.out.println(s2); // exibe: ta fogo

Na linha 3, o método substring é invocado com o argumento 9. Assim, ele devolve a substring de
“Porta corta fogo” que começa na posição 9 e se estende até o fim. Logo, a instrução da linha 5 exibe
“ta fogo”.

Na segunda forma de utilizar o método substring, dois parâmetros do tipo int são necessários: a
e b. O método então devolve o trecho que começa com o caractere na posição a e termina com o
caractere na posição b −1. Vejamos um exemplo.

132 www.k19.com.br

133 OPERADORES

1 String s1 = "O elevador chegou";
2
3 String s2 = s1.substring(2, 10);
4
5 System.out.println(s2); // exibe: elevador

Na linha 3, o método substring é invocado com os argumentos 2 e 10. Assim, ele devolve a subs-
tring de “O elevador chegou” que começa na posição 2 e se estende até a posição de número 9 dessa
string. Logo, a instrução da linha 5 exibe “elevador”.

toUpperCase

Podemos transformar em maiúsculas todas as letras contidas em uma string com o método
toUpperCase da classe String. No exemplo abaixo, esse método é aplicado à string cujo conteúdo é
“Rafael Cosentino”. Esse método então devolve a string com todas as letras maiúsculas, ou seja, de-
volve “RAFAEL COSENTINO”.

1 String s1 = "Rafael Cosentino";
2
3 String s2 = s1.toUpperCase ();
4
5 System.out.println(s2); // exibe: RAFAEL COSENTINO

toLowerCase

Também podemos transformar em minúsculas todas as letras contidas em uma string com o mé-
todo toLowerCase da classe String. No exemplo a seguir, esse método é aplicado à string cujo conteúdo
é “Rafael Cosentino”. Assim, esse método devolve a string “rafael cosentino”.

1 String s1 = "Rafael Cosentino";
2
3 String s2 = s1.toLowerCase ();
4
5 System.out.println(s2); // exibe: rafael cosentino

trim

Com o método trim da classe String, podemos eliminar os espaços em branco do começo e do
término de uma string. Veja o exemplo abaixo.

1 String s1 = " Rafael Cosentino ";
2
3 String s2 = s1.trim();
4
5 // "Rafael Cosentino"
6 System.out.println(s2);

No código acima, a chamada ao método trim devolve a string que não possui espaços antes de
“Rafael” e não possui espaços após “Cosentino”. Observe que os espaços entre “Rafael” e “Cosentino”
não são removidos.

www.facebook.com/k19treinamentos 133

OPERADORES 134

3.25 Operações com Data e Hora

Algumas operações são específicas para data e hora. A seguir, apresentaremos algumas dessas
operações.

add

Podemos modificar uma data e hora acrescentando ou subtraindo uma quantidade nos campos
que definem essa data e hora. Essa tarefa pode ser feita com o método add da classe Calendar.

1 java.util.Calendar c = new java.util.GregorianCalendar (2010, 7, 27);
2
3 // Acrescentando 140 dias
4 c.add(java.util.Calendar.DAY_OF_MONTH , 140);
5
6 // Subtraindo 2 anos
7 c.add(java.util.Calendar.YEAR , -2);
8
9 // Acrescentando 72 horas
10 c.add(java.util.Calendar.HOUR , 72);

Na primeira linha do código acima, é criado um objeto do tipo Calendar para representar a data 27
de Agosto de 2010. Na linha 4, foram adicionados 140 dias a essa data. Assim, obtemos a data 14 de
Janeiro de 2011. Na linha 7, são subtraídos dois anos dessa data. Assim, a data obtida é 14 de Janeiro
de 2009. Na última linha, são adicionadas 72 horas. Assim, a data obtida é 17 de Janeiro de 2009.

before e after

Podemos comparar datas e horas. O método before da classe Calendar é usado para determinar se
uma data é anterior a uma outra data. Analogamente, o método after da classe Calendar é utilizado
para determinar se uma data é posterior a uma outra. Veja o exemplo abaixo.

1 java.util.Calendar c1 = new java.util.GregorianCalendar (2010, 7, 27);
2 java.util.Calendar c2 = java.util.Calendar.getInstance (); // data e hora atuais
3
4 System.out.println(c1.before(c2)); // exibe: true
5
6 System.out.println(c1.after(c2)); // exibe: false

Na primeira linha do código acima, é criado um objeto do tipo Calendar que representa a data 27
de Agosto de 2010. Na segunda linha, um objeto do tipo Calendar é criado para representar a data
no momento de execução dessa instrução. Na linha 4, usamos o método before para verificar se a
primeira data é anterior à segunda. Na linha 6, usamos o método after para verificar se a primeira
data é posterior à segunda.

134 www.k19.com.br

135 OPERADORES

3.26 Exercícios de Fixação

30 Na pasta operadores, crie um arquivo chamado OperacoesString.java. Complete o código abaixo
utilizando obrigatoriamente as seguintes operações de strings: charAt, startsWith, endsWith, trim, re-
placeAll, toLowerCase, toUpperCase, substring e contains. O programa deve exibir a seguinte saída.

C
true
false
true
false
true
false
Jonas Cosentino
Cosentino
Jonas
JONAS COSENTINO
jonas cosentino
K19 Treinamentos

Terminal 3.34: Saída esperada

1 class OperacoesString {
2 public static void main(String [] args) {
3 String s = "Rafael Cosentino";
4
5 System.out.println(s. (7));
6
7 System.out.println(s. ("Cosentino"));
8 System.out.println(s. ("Hirata"));
9
10 System.out.println(s. ("Cosentino"));
11 System.out.println(s. ("Hirata"));
12
13 System.out.println(s. ("Rafael"));
14 System.out.println(s. ("Marcelo"));
15
16 s = s. ("Rafael", "Jonas");
17 System.out.println(s);
18
19 System.out.println(s. (6));
20 System.out.println(s. (0, 5));
21
22 s = s. ();
23 System.out.println(s);
24
25 s = s. ();
26 System.out.println(s);
27
28 s = " K19 Treinamentos ";
29 System.out.println(s. ());
30 }
31 }

Código Java 3.148: OperacoesString.java

31 Através do terminal, entre na pasta operadores; compile o arquivo OperacoesString.java; e execute
o programa.

www.facebook.com/k19treinamentos 135

OPERADORES 136

3.27 Erro: Utilizar operandos e operadores incompatíveis

Um erro de compilação comum ocorre quando um operador é aplicado a valores incompatíveis.
Veja alguns exemplos de programas em Java com esse problema.

1 class Programa {
2 public static void main(String [] args) {
3 String s1 = "K19";
4 String s2 = "Treinamentos";
5 System.out.println(s1 - s2);
6 }
7 }

Código Java 3.149: Programa.java

O operador - não pode ser aplicado a valores do tipo String. A mensagem de erro de compilação
seria semelhante à apresentada abaixo.

Programa.java :5: error: bad operand types for binary operator ’-’
System.out.println(s1 - s2);

^
first type: String
second type: String

1 error

Terminal 3.35: Erro de compilação

No código abaixo, o operador > é usado com operandos do tipo boolean.

1 class Programa {
2 public static void main(String [] args) {
3 boolean b1 = true;
4 boolean b2 = false;
5 System.out.println(b1 > b2);
6 }
7 }

Código Java 3.150: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :5: error: bad operand types for binary operator ’>’
System.out.println(b1 > b2);

^
first type: boolean
second type: boolean

1 error

Terminal 3.36: Erro de compilação

No código a seguir, o operador de negação ! é aplicado a um valor do tipo int.

1 class Programa {
2 public static void main(String [] args) {
3 int i = 1;
4 System.out.println (!i);
5 }
6 }

Código Java 3.151: Programa.java

136 www.k19.com.br

137 OPERADORES

O operador de negação não pode ser aplicado a valores de tipos primitivos numéricos. A mensa-
gem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :4: error: bad operand type int for unary operator ’!’
System.out.println (!i);

^
1 error

Terminal 3.37: Erro de compilação

3.28 Erro: Divisão inteira por zero

Um erro de execução comum ocorre quando um valor numérico inteiro é divido pelo valor inteiro
0. Veja um exemplo de programa em Java com esse problema.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 10;
4 int b = 100 / (a - 10);
5 }
6 }

Código Java 3.152: Programa.java

Ao executar a classe Programa, a instrução da linha 4 provoca um erro de execução devido à divisão
do valor inteiro 100 pelo valor inteiro 0.

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Programa.main(Programa.java :4)

Terminal 3.38: Erro de execução

3.29 Erro: Armazenamento de valores incompatíveis

Um erro comum ocorre quando tentamos armazenar em uma variável um valor que não é com-
patível com o tipo dessa variável. A seguir, apresentamos alguns exemplos onde esse tipo de pro-
blema acontece. Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 double a = 10.0;
4 int b = 5 + a;
5 }
6 }

Código Java 3.153: Programa.java

Nesse exemplo, declaramos a variável a do tipo double e a variável b do tipo int. Na linha 4, tenta-
mos armazenar o valor de uma expressão cujo resultado é do tipo double na variável b. Como b é do
tipo int, isso provoca um erro de compilação.

Programa.java :4: error: incompatible types: possible lossy conversion from double to int
int b = 5 + a;

^
1 error

Terminal 3.39: Erro de compilação

www.facebook.com/k19treinamentos 137

OPERADORES 138

No exemplo abaixo, declaramos uma variável do tipo float e tentamos inicializá-la com o valor
3.14.

1 class Programa {
2 public static void main(String [] args) {
3 float a = 3.14;
4 }
5 }

Código Java 3.154: Programa.java

Como 3.14 é um valor do tipo double, isso provoca um erro de compilação.

Programa.java :3: error: incompatible types: possible lossy conversion from double to float
float a = 3.14;

^
1 error

Terminal 3.40: Erro de compilação

3.30 Erro: Castings não permitidos

Algumas operações de castings não são permitidas em Java. Por exemplo, considere a conversão
de um número inteiro para String.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 19;
4 String b = (String) a;
5 }
6 }

Código Java 3.155: Programa.java

A conversão de um número inteiro para String não é permitida com o uso de casting. A classe
Programa acima não compila e apresenta o seguinte erro de compilação.

Programa.java :4: error: incompatible types: int cannot be converted to String
String b = (String) a;

^
1 error

Terminal 3.41: Erro de compilação

Para converter um número inteiro para String, podemos usar o método valueOf da classe String.
A conversão de String para int também não é permitida usando uma operação de casting.

1 class Programa {
2 public static void main(String [] args) {
3 String b = "19";
4 int a = (int) b;
5 }
6 }

Código Java 3.156: Programa.java

138 www.k19.com.br

139 OPERADORES

O código acima apresenta o seguinte erro de compilação.

Programa.java :4: error: incompatible types: String cannot be converted to int
int a = (int) b;

^
1 error

Terminal 3.42: Erro de compilação

Para converter uma String para um int, podemos usar o método parseInt da classe Integer.

3.31 Exercícios Complementares

1 Na pasta operadores, crie um arquivo chamado TestaConversaoDouble.java. Implemente um pro-
grama em Java que declare uma variável do tipo String chamada texto e associe a ela o valor “1571.11”.
Depois, utilizando o método parseDouble da classe Double, copie o valor dessa variável para uma variá-
vel do tipo double chamada numero. Por fim, exiba, na saída padrão, o valor da variável numero.

2 Na pasta operadores, crie um arquivo chamado UseOperadoresAritmeticos.java. Complete o código
a seguir com os operadores aritméticos +, -, *, / e %. O programa deve exibir os números 24, 10, 1, 0 e
5 nessa ordem.

1 class UseOperadoresAritmeticos {
2 public static void main(String [] args) {
3 int x = 3 8;
4 int y = 7 3;
5 int z = 4 3;
6 int q = 8 2;
7 int w = 9 4;
8
9 System.out.println(x);
10 System.out.println(y);
11 System.out.println(z);
12 System.out.println(q);
13 System.out.println(w);
14 }
15 }

Código Java 3.157: UseOperadoresAritmeticos.java

3 Na pasta operadores, crie um arquivo chamado IdadeMedia.java. Utilizando os operadores aritmé-
ticos, implemente um programa em Java que mostre a idade média de três pessoas: Rafael Cosentino
(29 anos); Jonas Hirata (31 anos); Marcelo Martins (29 anos).

4 Na pasta operadores, crie um arquivo chamado UseDivisaoCasting.java. Complete o código a seguir
com operações de divisão e operações de casting. O programa deve exibir os números 20 e 20.5 nessa
ordem. Utilize as variáveis x e y.

1 class UseDivisaoCasting {
2 public static void main(String [] args) {
3 int x = 41;
4 int y = 2;
5
6 System.out.println();

www.facebook.com/k19treinamentos 139

OPERADORES 140

7 System.out.println();
8 }
9 }

Código Java 3.158: UseDivisaoCasting.java

5 Na pasta operadores, crie um arquivo chamado UseConcatenacao.java. Complete o código a se-
guir com operações de concatenação. O programa deve exibir as strings “Rafael Cosentino”, “Jonas
Hirata” e “Marcelo Martins” nessa ordem. Utilize as variáveis s1, s2, s3, s4, s5 e s6.

1 class UseConcatenacao {
2 public static void main(String [] args) {
3 String s1 = "Rafael";
4 String s2 = "Jonas";
5 String s3 = "Marcelo";
6 String s4 = "Cosentino";
7 String s5 = "Hirata";
8 String s6 = "Martins";
9
10 System.out.println();
11 System.out.println();
12 System.out.println();
13 }
14 }

Código Java 3.159: UseConcatenacao.java

6 Na pasta operadores, crie o arquivo UseOperadoresAtribuicao.java. Complete o código com os ope-
radores: =, +=, -=, *=, /=, %=, ++ e --. Exiba os números 5, 50, 43, 10, 11, 16, 15 e 3 nessa ordem.

1 class UseOperadoresAtribuicao {
2 public static void main(String [] args) {
3 int = 5;
4 System.out.println(x);
5 x 10;
6 System.out.println(x);
7 x 7;
8 System.out.println(x);
9 x 4;
10 System.out.println(x);
11 x ;
12 System.out.println(x);
13 x 5;
14 System.out.println(x);
15 x ;
16 System.out.println(x);
17 x 4;
18 System.out.println(x);
19 }
20 }

Código Java 3.160: UseOperadoresAtribuicao.java

7 Na pasta operadores, crie um arquivo chamado NumeroTelefone.java. Implemente um programa
em Java que aplique os operadores de atribuição nos dígitos do telefone 23873791. Crie uma variável
do tipo int chamada x. Para cada dígito do telefone, começando pelo primeiro dígito, aplique um
operador usando como operandos o valor da variável x e o dígito em questão. O resultado deve ser
armazenado na variável x. Você deve usar os operadores =, +=, *=, -=, /=, %, *= e += nessa ordem.

140 www.k19.com.br

141 OPERADORES

8 Na pasta operadores, crie um arquivo chamado UseOperadoresRelacionais.java. Complete o código
a seguir com operadores relacionais: >, <, >=, <=, == e !=. O programa deve exibir os valores true, true,
false, false, false e true nessa ordem.

1 class UseOperadoresRelacionais {
2 public static void main(String [] args) {
3 int x = 20;
4 int y = 15;
5
6 System.out.println(x y);
7 System.out.println(x y);
8 System.out.println(x y);
9 System.out.println(x y);
10 System.out.println(x y);
11 System.out.println(x y);
12 }
13 }

Código Java 3.161: UseOperadoresRelacionais.java

9 Na pasta operadores, crie um arquivo chamado VerificaValores.java. Implemente um programa
em Java que verifica se o valor do ano em que o Brasil foi campeão mundial de futebol pela primeira
vez somado a 22 e dividido por 5 é maior ou igual do que o valor do ano em que o Brasil foi descoberto
somado a 120 e dividido por 4.

10 Na pasta operadores, crie um arquivo chamado UseOperadoresLogicos.java. Complete o código a
seguir com os operadores lógicos ˆ, &, &&, | e ||. O programa deve exibir os valores true, false, true,
false e false nessa ordem. Não utilize operadores repetidos.

1 class UseOperadoresLogicos {
2 public static void main(String [] args) {
3 int q = 10;
4 int w = 5;
5 int e = 8;
6 int r = 11;
7
8 System.out.println(q > w e < r);
9 System.out.println(q > r e < w);
10 System.out.println(q > e w < r);
11 System.out.println(q > w r < e);
12 System.out.println(q > w e < r);
13 }
14 }

Código Java 3.162: UseOperadoresLogicos.java

11 Na pasta operadores, crie um arquivo chamado UseTernarioNegacaoIncrementoDecremento.java. Com-
plete o código a seguir utilizando o operador ternário, o operador de negação e os operadores ++ e
--. O programa deve exibir 8, “Marcelo”, 9 e 10 nessa ordem. Não é necessário preencher todas as
caixas.

1 class UseTernarioNegacaoIncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 10;
4 int b = 8;
5
6 System.out.println((a < b) a b);
7 System.out.println((a < b) "Marcelo" "Jonas");

www.facebook.com/k19treinamentos 141

OPERADORES 142

8 System.out.println((a < b) a b);
9 System.out.println((a == b) a b + 1);
10 }
11 }

Código Java 3.163: UseTernarioNegacaoIncrementoDecremento.java

3.32 Resumo

1 Os operadores são utilizados para manipular os valores armazenados nas variáveis ou valores
literais.

2 Não é necessário fazer casting para copiar o valor armazenado em uma variável primitiva para
outra variável primitiva desde que o tipo da primeira variável seja compatível com o tipo da segunda.
Ver Tabela 3.1.

3 Apesar do tipo long ser compatível com o tipo float, copiar valores armazenados em uma va-
riável do tipo long para uma variável do tipo float pode gerar resultados indesejados.

4 Operações de casting podem gerar resultados bem diferentes dos desejados.

5 A conversão de um valor de tipo primitivo numérico para um valor de tipo não primitivo nu-
mérico é realizada através de um processo chamado boxing.

6 A conversão de um valor de tipo não primitivo numérico para um valor de tipo primitivo nu-
mérico é realizada através de um processo chamado unboxing.

7 Os processos de boxing e unboxing, quando necessários, são realizados de forma automática.
Daí surge o termo autoboxing.

8 A conversão de valores dos tipos byte, short, int, long, float, double e boolean para String pode ser
realizada através dos métodos Byte.parseByte, Short.parseShort, Integer.parseInt, Long.parseLong,
Float.parseFloat, Double.parseDouble e Boolean.parseBoolean, respectivamente.

9 As operações aritméticas de adição, subtração, multiplicação, divisão e resto são realizadas
respectivamente através dos operadores +, -, *, / e %.

10 Na divisão entre valores inteiros, se o divisor for zero, ocorrerá ArithmeticException.

142 www.k19.com.br

143 OPERADORES

11 Na divisão entre valores reais, se o divisor for zero, o resultado poderá ser +Infinity, -Infinity ou
NaN.

12 A divisão entre valores inteiros desconsidera a parte fracionária do resultado.

13 Operações aritméticas podem produzir overflow e underflow.

14 O operador + também é utilizado para realizar a concatenação de strings.

15 O conteúdo de uma variável pode ser modificado através dos operadores de atribuição: =, +=,
-=, *=, /=, %=, ++ e --.

16 Podemos comparar o conteúdo das variáveis ou os valores literais através dos operadores rela-
cionais: ==, !=, <, <=, > e >=.

17 Operadores relacionais devolvem valores booleanos.

18 As operações lógicas E, OU e OU EXCLUSIVO são realizadas através dos operadores: &, &&, |, ||
e ˆ.

19 O operador && não avalia o segundo operando se o valor do primeiro operando for false.

20 O operador || não avalia o segundo operando se o valor do primeiro operando for true.

21 O primeiro argumento do operador ternário ?: deve ser um valor booleano.

22 O operador de negação ! inverte os valores booleanos.

23 O operador ++ pode ser utilizado na forma de pré e pós incremento.

24 O operador -- pode ser utilizado na forma de pré e pós decremento.

3.33 Prova

1 Qual afirmação sobre casting está correta?

www.facebook.com/k19treinamentos 143

OPERADORES 144

a) A linguagem Java não permite operações de casting.

b) Operações de casting são utilizadas para copiar valores entre variáveis do mesmo tipo.

c) Operações de casting são perigosas pois podem gerar valores indesejados.

d) Na linguagem Java, as operações de casting são utilizadas para transformar strings em núme-
ros.

e) Na linguagem Java, as operações de casting são utilizadas para transformar números em strings.

2 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 double a = 10.5;
4 String b = "3.14";
5
6 int c = (int)a;
7 double d = Double.parseDouble(b);
8 }
9 }

Código Java 3.164: Programa.java

Qual afirmação está correta?

a) Na linha 6, há um erro de compilação.

b) Na linha 7, há um erro de execução.

c) Na linha 6, o valor armazenado na variável a é convertido para int através de uma operação de
casting.

d) Na linha 7, o valor armazenado na variável b é convertido para double através de uma operação
de casting.

e) Na linha 7, o valor armazenado na variável b é convertido para String através de uma operação
de casting.

3 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 byte a = 127;
4
5 byte b = 255;
6 }
7 }

Código Java 3.165: Programa.java

Qual afirmação está correta?

144 www.k19.com.br

145 OPERADORES

a) Há erros de compilação nas linhas 3 e 5.

b) Há erros de execução nas linhas 3 e 5.

c) Há erro de execução na linha 3.

d) Há erro de compilação na linha 5.

e) Não há erros de compilação nem de execução.

4 Qual é o resultado da operação 5%2?

a) 2

b) 2.5

c) 0.1

d) 1

e) 5.1

5 Quais são os resultados das operações abaixo?

5/2
5.0/2
(double)5/2

a) 2, 2 e 2

b) 2.5, 2.5 e 2.5

c) 2, 2.5 e 2.5

d) 2, 2 e 2.5

e) 2, 2.5 e 2

6 Quais são os resultados das operações abaixo?

(double)(5/2)
(double)5/2
5/(double)2

a) 2.5, 2.5 e 2.5

b) 2, 2 e 2

www.facebook.com/k19treinamentos 145

OPERADORES 146

c) 2.0, 2 e 2.5

d) 2.5, 2.5 e 2

e) 2.0, 2.5 e 2.5

7 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 int a = Integer.MAX_VALUE;
4
5 System.out.println(a + 1);
6 }
7 }

Código Java 3.166: Programa.java

Qual afirmação está correta?

a) Há um erro de compilação na linha 5.

b) Há um erro de execução na linha 3.

c) O programa exibirá a mensagem “Integer.MAX_VALUE + 1”.

d) O programa exibirá o valor 2147483648.

e) O programa exibirá o valor -2147483648.

8 Qual é o resultado da operação abaixo?

1 + 2 + "rafael" + 3 + 4

a) 12rafael34

b) 3rafael34

c) 3rafael7

d) 12rafael7

e) ocorrerá um erro

9 Qual é o valor armazenado na variável i depois das seguintes operações?

int i = 10;
i++;
i += 10;
--i;
i %= 3;

146 www.k19.com.br

147 OPERADORES

a) 2

b) 10

c) 3

d) 5

e) 0

10 Qual é o tipo dos valores devolvidos pelos operadores relacionais?

a) números inteiros

b) números reais

c) caracteres

d) string

e) booleanos

11 Quais são os resultados das operações baixo?

10 > 5 & 7 < 10
10 > 5 & 7 > 10
10 < 5 & 7 < 10
10 < 5 & 7 > 10

a) true, true, true e true

b) true, true, true e false

c) true, false, true e false

d) true, false, false e false

e) false, true, true e false

12 Quais são os resultados das operações abaixo?

10 > 5 | 7 < 10
10 > 5 | 7 > 10
10 < 5 | 7 < 10
10 < 5 | 7 > 10

a) true, true, true e true

www.facebook.com/k19treinamentos 147

OPERADORES 148

b) true, true, true e false

c) true, false, true e false

d) true, false, false e false

e) false, true, true e false

13 Quais são os resultados das operações abaixo?

10 > 5 ^ 7 < 10
10 > 5 ^ 7 > 10
10 < 5 ^ 7 < 10
10 < 5 ^ 7 > 10

a) true, true, true e true

b) true, true, true e false

c) true, false, true e false

d) true, false, false e false

e) false, true, true e false

14 Quais são os resultados das operações abaixo?

10 > 5 ? 10 : 5
!(10 > 5) ? 10 : 5
(10 < 5) ? "k01" : "k02"

a) 10, 10, k01

b) 5, 5, k02

c) 10, 5, k02

d) 10, 5, k01

e) 5, 10, k02

15 O que é exibido com o código Java a seguir?

1 int i = 10;
2 System.out.println(i++);
3 System.out.println (++i);
4 System.out.println(i--);
5 System.out.println(--i);

148 www.k19.com.br

149 OPERADORES

a) 10, 12, 12 e 10

b) 11, 12, 11, 10

c) 10, 11, 11, 10

d) 10, 10, 10, 10

e) 11, 11, 11, 10

16 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println (+-+-+-+-+1);
4 }
5 }

Código Java 3.168: Programa.java

Qual afirmação está correta?

a) Há um erro de compilação na linha 3.

b) Há um erro de execução na linha 3.

c) O programa exibirá o valor 1.

d) O programa exibirá o valor -1.

e) O programa exibirá a mensagem “+-+-+-+-+1”.

17 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println (+-++-+1);
4 }
5 }

Código Java 3.169: Programa.java

Qual afirmação está correta?

a) Há um erro de compilação na linha 3.

b) O programa exibirá o valor 1.

c) O programa exibirá o valor 0.

d) O programa exibirá o valor -1.

e) O programa exibirá o valor 2.

www.facebook.com/k19treinamentos 149

OPERADORES 150

18 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 int a;
4
5 int b = a = 1;
6
7 System.out.println(b);
8 }
9 }

Código Java 3.170: Programa.java

Qual afirmação está correta?

a) Há um erro de compilação na linha 5.

b) Há um erro de execução na linha 5.

c) Há um erro de compilação na linha 7.

d) O programa exibirá o valor 1.

e) Nada será exibido.

19 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println(’a’ + ’a’);
4 }
5 }

Código Java 3.171: Programa.java

Qual afirmação está correta?

a) Há um erro de compilação na linha 3.

b) Há um erro de execução na linha 3.

c) O programa exibirá a mensagem “aa”.

d) O programa exibirá o valor 194.

e) O programa exibirá o caractere “Â”.

20 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println(Integer.MIN_VALUE / -1);
4 }

150 www.k19.com.br

151 OPERADORES

5 }

Código Java 3.172: Programa.java

Qual afirmação está correta?

a) O programa exibirá a valor 2147483648.

b) O programa exibirá o valor -2147483648.

c) O programa exibirá o caractere 2147483647.

d) Há um erro de compilação na linha 3.

e) Há um erro de execução na linha 3.

21 Considere o seguinte código em linguagem Java.

1 class Programa {
2 public static void main(String [] args) {
3 System.out.println (-(2147483648));
4 }
5 }

Código Java 3.173: Programa.java

Qual afirmação está correta?

a) O programa exibirá a valor 2147483648.

b) O programa exibirá o valor -2147483648.

c) O programa exibirá o caractere 2147483647.

d) Há um erro de compilação na linha 3.

e) Há um erro de execução na linha 3.

Minha Pontuação Pontuação Mínima: 16 Pontuação Máxima: 21

www.facebook.com/k19treinamentos 151

OPERADORES 152

152 www.k19.com.br

CONTROLE DE FLUXO

C
A

P
Í

T
U

L
O

4
4.1 Introdução

Neste capítulo, mostraremos instruções que permitem controlar o fluxo de execução de um pro-
grama. Essas instruções aumentam a “inteligência” do código. Basicamente, as linguagens de pro-
gramação oferecem dois tipos de instruções para controlar o fluxo de execução dos programas: ins-
truções de decisão e de repetição.

4.2 Instruções de Decisão

Considere um parque de diversões como os da Disney. Nesses parques, para garantir a segu-
rança, alguns brinquedos possuem restrições de acesso. Em geral, essas restrições estão relaciona-
das à altura dos visitantes. Em alguns parques, a altura do visitante é obtida por sensores instalados
na entrada dos brinquedos e um programa de computador libera ou bloqueia o acesso de acordo
com altura obtida. Então, o programa deve decidir se executa um trecho de código de acordo com
uma condição. Essa decisão pode ser realizada através das instruções de decisão oferecidas pelas
linguagens de programação.

Nos exemplos vistos nos capítulos anteriores, a ordem da execução das linhas de um programa é
exatamente a ordem na qual elas foram definidas no código fonte. As instruções de decisão permi-
tem decidir se um bloco de código deve ou não ser executado. As instruções de decisão são capazes
de criar um “desvio” no fluxo de execução de um programa.

Neste capítulo, veremos as seguintes instruções de decisão: if, else e switch.

4.3 Instrução if

A instrução de decisão if é utilizada quando um determinado trecho de código deve ser execu-
tado apenas se uma condição for true. A sintaxe da instrução if é a seguinte:

1 if(condição) {
2 bloco de comandos
3 }

Como funciona a instrução if? Se a condição for true, o bloco de comandos será executado. Caso
contrário, ou seja, se a condição for false, o bloco de comandos não será executado.

www.facebook.com/k19treinamentos 153

CONTROLE DE FLUXO 154

A condição da instrução if deve ser um valor do tipo boolean ou do tipo Boolean. Os valores do tipo
Boolean são convertidos para boolean através do autoboxing. A Figura 4.1 ilustra o fluxo de execução
da instrução if.

condição

bloco de
comandos

false

true

Figura 4.1: Fluxograma da instrução if

Simulação

A altura mínima para o ingresso na atração “The Barnstormer” do parque temático da Disney
“Magic Kingdom” é 0.89 metros. Vamos simular a execução do programa que controla o acesso dos
visitantes a essa atração.

1 Na linha 1, um número aleatório do tipo double é gerado com o trecho de código Math.random().
Vamos utilizar esse número para representar a altura de um visitante que deseja ingressar na atração
“The Barnstormer”. Esse valor é armazenado na variável altura. Suponha que o valor 0.75 tenha sido
gerado.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.75

2 Na linha 2, o valor armazenado na variável altura é exibido no terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.75

0.75

154 www.k19.com.br

155 CONTROLE DE FLUXO

3 Na linha 3, a comparação da condição do if devolve true pois o valor da variável altura é menor
do que 0.89.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.75

0.75

4 A linha 4 é executada porque a condição do if da linha 3 é verdadeira. Dessa forma, a mensagem
“Acesso bloqueado” é exibida no terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.75

0.75
Acesso bloqueado

5 Por fim, a linha 6 é executada e a mensagem “The Barnstormer” é exibida no terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.75

0.75
Acesso bloqueado
The Barnstormer

Simulação

1 Na linha 1, um número aleatório do tipo double é gerado com o trecho de código Math.random().
Vamos utilizar esse número para representar a altura de um visitante que deseja ingressar na atração
“The Barnstormer”. Esse valor é armazenado na variável altura. Suponha que o valor 0.97 tenha sido
gerado.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.97

2 Na linha 2, o valor armazenado na variável altura é exibido no terminal.

www.facebook.com/k19treinamentos 155

CONTROLE DE FLUXO 156

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.97

0.97

3 Na linha 3, a comparação da condição do if devolve false pois o valor da variável altura não é
menor do que 0.89.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.97

0.97

4 A linha 4 não é executada porque a condição do if da linha 3 é falsa. Dessa forma, o fluxo de
execução vai direto para a linha 6 e a mensagem “The Barnstormer” é exibida no terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 }
6 System.out.println("The Barnstormer");

altura = 0.97

0.97
The Barnstormer

4.4 Instrução else

Muitas vezes, queremos executar um bloco de comandos caso uma condição seja verdadeira e
outro bloco de comandos caso essa condição seja falsa. Para isso, podemos utilizar as instruções de
decisão if e else. Veja abaixo, a estrutura dessas instruções.

1 if(condição) {
2 bloco de comandos
3 } else {
4 bloco de comandos
5 }

No exemplo acima, se a condição do if for true, o bloco de comandos do if será executado. Caso
contrário, ou seja, se a condição for false, o bloco de comandos do else será executado.

A instrução else não pode aparecer sozinha no código sem estar vinculada a uma instrução if. A
instrução else pode ser traduzida em português para “senão”. Em português, assim como em Java,
não faz sentido dizer “senão” sem antes dizer “se”. Por isso, não podemos utilizar a instrução else

sem antes ter utilizado a instrução if. A Figura 4.2 exibe o fluxograma das instruções if e else.

156 www.k19.com.br

157 CONTROLE DE FLUXO

condição

bloco de
comandos
do else

falsetrue

bloco de
comandos
do if

Figura 4.2: Fluxograma das instruções if e else

Simulação

A altura mínima para o ingresso na atração “The Barnstormer” do parque temático da Disney
“Magic Kingdom” é 0.89 metros. Vamos simular a execução do programa que controla o acesso dos
visitantes a essa atração.

1 Na linha 1, um número aleatório do tipo double é gerado com o trecho de código Math.random().
Vamos utilizar esse número para representar a altura de um visitante que deseja ingressar na atração
“The Barnstormer”. Esse valor é armazenado na variável altura. Suponha que o valor 0.75 tenha sido
gerado.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.75

2 Na linha 2, o valor armazenado na variável altura é exibido no terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.75

www.facebook.com/k19treinamentos 157

CONTROLE DE FLUXO 158

0.75

3 Na linha 3, a comparação da condição do if devolve true pois o valor da variável altura é menor
do que 0.89.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.75

0.75

4 A linha 4 é executada porque a condição do if da linha 3 é verdadeira. Dessa forma, a mensagem
“Acesso bloqueado” é exibida no terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.75

0.75
Acesso bloqueado

5 Por fim, o fluxo de execução “pula” para a linha 8 e a mensagem “The Barnstormer” é exibida no
terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.75

0.75
Acesso bloqueado
The Barnstormer

Simulação

1 Na linha 1, um número aleatório do tipo double é gerado com o trecho de código Math.random().
Vamos utilizar esse número para representar a altura de um visitante que deseja ingressar na atração
“The Barnstormer”. Esse valor é armazenado na variável altura. Suponha que o valor 0.97 tenha sido
gerado.

158 www.k19.com.br

159 CONTROLE DE FLUXO

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.97

2 Na linha 2, o valor armazenado na variável altura é exibido no terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.97

0.97

3 Na linha 3, a comparação da condição do if devolve false pois o valor da variável altura não é
menor do que 0.89.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.97

0.97

4 A linha 4 não é executada porque a condição do if da linha 3 é falsa. Dessa forma, o fluxo de
execução vai direto para a linha 6 e a mensagem “Acesso liberado” é exibida no terminal.

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.97

0.97
Acesso liberado

5 Por fim, o fluxo de execução continua e a linha 8 é executada exibindo a mensagem “The Barns-
tormer”.

www.facebook.com/k19treinamentos 159

CONTROLE DE FLUXO 160

1 double altura = Math.random ();
2 System.out.println(altura);
3 if(altura < 0.89) {
4 System.out.println("Acesso bloqueado");
5 } else {
6 System.out.println("Acesso liberado");
7 }
8 System.out.println("The Barnstormer");

altura = 0.97

0.97
Acesso liberado
The Barnstormer

4.5 Instruções de Decisão Encadeadas

Considere um programa de computador que controla os saques efetuados nos caixas eletrônicos
de um banco. Nesse banco, os saques efetuados das 6 horas até as 22 horas não podem ser superiores
a R$ 5.000,00. Por outro lado, os saques efetuados depois das 22 horas e antes das 6 horas não podem
ser superiores a R$ 400,00. Podemos implementar essa lógica utilizando as instruções de decisão
oferecidas pelas linguagens de programação.

1 if(hora >= 6 && hora <= 22) {
2 if(valor <= 5000) {
3 System.out.println("Saque efetuado com sucesso");
4 } else {
5 System.out.println("Valor máximo de saque é R$ 5000 ,00");
6 }
7 } else {
8 if(valor <= 400) {
9 System.out.println("Saque efetuado com sucesso");
10 } else {
11 System.out.println("Valor máximo de saque é R$ 400,00");
12 }
13 }

Simulação

Nessa simulação, mostraremos um exemplo de utilização de instruções de decisão encadeadas.

1 Ao executar a primeira linha, uma variável chamada nota do tipo double é declarada e inicializada
com o valor 8.2.

1 double nota = 8.2;
2 if (nota >= 5.0) {
3 System.out.println("Aprovado");
4 if (nota < 8.0) {
5 System.out.println("Sua nota foi regular");
6 } else {
7 System.out.println("Sua nota foi ótima");
8 }
9 } else {
10 System.out.println("Reprovado");
11 }

nota = 8.2

160 www.k19.com.br

161 CONTROLE DE FLUXO

2 Na sequência, a linha 2 será executada. Como a variável nota armazena o valor 8.2, a operação
nota >= 5.0 devolve true.

1 double nota = 8.2;
2 if (nota >= 5.0) {
3 System.out.println("Aprovado");
4 if (nota < 8.0) {
5 System.out.println("Sua nota foi regular");
6 } else {
7 System.out.println("Sua nota foi ótima");
8 }
9 } else {
10 System.out.println("Reprovado");
11 }

nota = 8.2

3 Como a condição do if da linha 2 é verdadeira, a linha 3 é executada e a palavra “Aprovado” é
exibida na saída padrão.

1 double nota = 8.2;
2 if (nota >= 5.0) {
3 System.out.println("Aprovado");
4 if (nota < 8.0) {
5 System.out.println("Sua nota foi regular");
6 } else {
7 System.out.println("Sua nota foi ótima");
8 }
9 } else {
10 System.out.println("Reprovado");
11 }

nota = 8.2

Aprovado

4 Continuando a execução, a linha 4 será processada. Como a variável nota armazena o valor 8.2,
a operação nota < 8.0 devolve false.

1 double nota = 8.2;
2 if (nota >= 5.0) {
3 System.out.println("Aprovado");
4 if (nota < 8.0) {
5 System.out.println("Sua nota foi regular");
6 } else {
7 System.out.println("Sua nota foi ótima");
8 }
9 } else {
10 System.out.println("Reprovado");
11 }

nota = 8.2

Aprovado

5 Como a condição do if da linha 4 é falsa, o fluxo de execução é direcionado para a linha 7. Assim,
a mensagem “Sua nota foi ótima” é exibida na saída padrão.

www.facebook.com/k19treinamentos 161

CONTROLE DE FLUXO 162

1 double nota = 8.2;
2 if (nota >= 5.0) {
3 System.out.println("Aprovado");
4 if (nota < 8.0) {
5 System.out.println("Sua nota foi regular");
6 } else {
7 System.out.println("Sua nota foi ótima");
8 }
9 } else {
10 System.out.println("Reprovado");
11 }

nota = 8.2

Aprovado
Sua nota foi ótima

4.6 Exercícios de Fixação

1 Abra um terminal, entre na pasta dos seus exercícios e crie uma pasta chamada controle-de-fluxo

para os arquivos desenvolvidos nesse capítulo.

2 Na pasta controle-de-fluxo, crie um arquivo chamado AprovadoReprovado.java. Complete o código
abaixo com comandos de controle de fluxo e operadores de comparação. O programa deve exibir a
mensagem “REPROVADO” quando a nota do aluno for menor do que 5 ou “APROVADO” caso con-
trário.

1 class AprovadoReprovado {
2 public static void main(String [] args) {
3 double nota = Math.random () * 10;
4
5 System.out.println("A nota do aluno é: " + nota);
6
7 (nota 5) {
8 System.out.println("REPROVADO");
9 } {
10 System.out.println("APROVADO");
11 }
12 }
13 }

Código Java 4.28: AprovadoReprovado.java

3 Compile o arquivo AprovadoReprovado.java e execute algumas vezes o programa.

4 Na pasta controle-de-fluxo, crie um arquivo chamado VerificaValorProduto.java. Complete o
código abaixo com comandos de controle de fluxo e operadores de comparção. O programa deve
exibir a mensagem “O produto 1 é o mais barato” quando o preço do primeiro produto for menor.
Caso contrário, se o preço do segundo produto for menor, a mensagem “O produto 2 é o mais barato”
deve ser exibida. Caso contrário, a mensagem “Os preços dos dois produtos são iguais” é que deve
ser exibida.

1 class VerificaValorProduto {
2 public static void main(String [] args) {
3 double precoDoProduto1 = Math.random () * 1000;

162 www.k19.com.br

163 CONTROLE DE FLUXO

4 double precoDoProduto2 = Math.random () * 1000;
5
6 System.out.println("O preço do produto 1 é: " + precoDoProduto1);
7 System.out.println("O preço do produto 2 é: " + precoDoProduto2);
8
9 (precoDoProduto1 precoDoProduto2) {
10 System.out.println("O produto 1 é o mais barato");
11 } {
12 (precoDoProduto2 precoDoProduto1) {
13 System.out.println("O produto 2 é o mais barato");
14 } {
15 System.out.println("Os preços dos dois produtos são iguais");
16 }
17 }
18 }
19 }

Código Java 4.29: VerificaValorProduto.java

5 Compile o arquivo VerificaValorProduto.java e execute algumas vezes o programa.

6 Na pasta controle-de-fluxo, crie o arquivo EscolheRoupa.java. Complete o código abaixo com
comandos de controle de fluxo e operadores de comparação. Implemente um programa que escolhe
a roupa com base na temperatura ambiente. Se a temperatura for menor do que 20 graus, a roupa
deve ser composta por blusa, calça, tênis e cachecol. Se a temperatura for maior ou igual a 20 graus,
a roupa deve ser formada por camiseta, bermuda, chinelo e óculos de sol.

1 class EscolheRoupa {
2 public static void main(String [] args) {
3 double temperatura = -20 + Math.random () * 60; // De -20 graus a 40 graus.
4 System.out.println("Temperatura: " + temperatura);
5 (temperatura 20) {
6 System.out.println("Está calor");
7 } {
8 System.out.println("Está frio");
9 }
10
11 (temperatura 20) {
12 System.out.println("blusa");
13 } {
14 System.out.println("camiseta");
15 }
16
17 (temperatura 20) {
18 System.out.println("bermuda");
19 } {
20 System.out.println("calça");
21 }
22
23 (temperatura 20) {
24 System.out.println("chinelo");
25 } {
26 System.out.println("tênis");
27 }
28
29 (temperatura 20) {
30 System.out.println("cachecol");
31 } {
32 System.out.println("óculos de sol");
33 }
34 }
35 }

Código Java 4.30: EscolheRoupa.java

www.facebook.com/k19treinamentos 163

CONTROLE DE FLUXO 164

7 Compile o arquivo EscolheRoupa.java e execute algumas vezes o programa.

8 Na pasta controle-de-fluxo, crie um arquivo chamado EscolheCaminho.java. Complete o código
abaixo com comandos de controle de fluxo. Toda vez que o número gerado aleatoriamente for menor
do que 0.5, o programa deve exibir a mensagem “Vire à esquerda”. Caso contrário, o programa deve
exibir a mensagem “Vire à direita”.

1 class EscolheCaminho {
2 public static void main(String [] args) {
3 double valor = Math.random ();
4
5 System.out.println("VALOR: " + valor);
6
7 (valor 0.5) {
8 System.out.println("Vire à esquerda");
9
10 valor = Math.random ();
11
12 System.out.println("VALOR: " + valor);
13
14 (valor 0.5) {
15 System.out.println("Vire à esquerda");
16 } {
17 System.out.println("Vire à direita");
18 }
19
20 } {
21 System.out.println("Vire à direita");
22
23 valor = Math.random ();
24
25 System.out.println("VALOR: " + valor);
26
27 (valor 0.5) {
28 System.out.println("Vire à esquerda");
29 } {
30 System.out.println("Vire à direita");
31 }
32 }
33 }
34 }

Código Java 4.31: EscolheCaminho.java

9 Compile o arquivo EscolheCaminho.java e execute algumas vezes o programa.

10 Na pasta controle-de-fluxo, crie um arquivo chamado ADivisivelPorB.java. Implemente um pro-
grama em Java que guarde dois valores numéricos: a e b. Exiba na saída padrão a mensagem “É
divisível” quando a for divisível por b ou a mensagem “Não é divisível”, caso contrário.

1 class ADivisivelPorB {
2 public static void main(String [] args) {
3 int a = (int)(Math.random () * 1000);
4 int b = (int)(Math.random () * 20);
5
6 System.out.println("a: " + a);
7 System.out.println("b: " + b);
8
9 {
10 System.out.println("É divisível");
11 } {

164 www.k19.com.br

165 CONTROLE DE FLUXO

12 System.out.println("Não é divisível");
13 }
14 }
15 }

Código Java 4.32: ADivisivelPorB.java

11 Compile o arquivo ADivisivelPorB.java e execute algumas vezes o programa.

12 Na pasta controle-de-fluxo, crie um arquivo chamado Saudacao.java. Implemente um programa
em Java que declare uma variável chamada hora. Essa variável deve armazenar a hora do dia. Esse
programa deve exibir a mensagem “Zzzzz” se a hora estiver no intervalo [0, 6], “Bom dia” se a hora
estiver no intervalo [7, 11], “Boa tarde” se a hora estiver no intervalo [12, 17] ou “Boa noite” se a hora
estiver no intervalo [18, 23].

1 class Saudacao {
2 public static void main(String [] args) {
3 int hora = (int)(Math.random () * 24);
4 System.out.println(hora + " hora(s)");
5
6 {
7 System.out.println("Zzzzz");
8 } {
9 System.out.println("Bom dia");
10 } {
11 System.out.println("Boa tarde");
12 } {
13 System.out.println("Boa noite");
14 }
15 }
16 }

Código Java 4.33: Saudacao.java

13 Compile o arquivo Saudacao.java e execute algumas vezes o programa.

4.7 Instruções de Repetição

Considere um programa que gera bilhetes de loteria. O número do primeiro bilhete é 1000, do
segundo 1001, do terceiro 1002 e assim por diante até o último bilhete numerado com 9999. Para
esse tipo de tarefa, podemos utilizar as instruções de repetição oferecidas pelas linguagens de pro-
gramação.

Como vimos, as instruções de decisão permitem que um determinado trecho de código seja exe-
cutado ou não. Agora, as instruções de repetição permitem que um determinado trecho de código
seja executado várias vezes.

Veremos neste capítulo as instruções de repetição while, for e do-while.

4.8 Instrução while

www.facebook.com/k19treinamentos 165

CONTROLE DE FLUXO 166

A instrução de repetição while recebe como parâmetro uma condição. O código no corpo do while

será executado de acordo com essa condição. A sintaxe dessa instrução é a seguinte:

1 while(condição) {
2 bloco de comandos
3 }

Traduzindo para o português a instrução while como enquanto, fica mais fácil entender o seu
funcionamento. O código acima poderia ser lido da seguinte forma: “Enquanto a condição for ver-
dadeira, execute o bloco de comandos do while”.

A condição da instrução while deve ser um valor do tipo boolean ou do tipo Boolean. Os valores
do tipo Boolean são convertidos para boolean através do autoboxing. Veja na Figura 4.3 o fluxo de
execução da instrução while.

condição

bloco de
comandos

false

true

Figura 4.3: Fluxograma da instrução while

Considere um programa que exibe na tela cem mensagens de acordo com o seguinte padrão:

Mensagem número 1
Mensagem número 2
. . .
Mensagem número 100

Terminal 4.19: Programa que exibe mensagens

Esse programa poderia ser implementado sem as instruções de repetição.

1 System.out.println("Mensagem número 1");
2 System.out.println("Mensagem número 2");
3 . . .
4 System.out.println("Mensagem número 100");

Código Java 4.35: Exibindo a frase “Mensagem número x”

O código acima teria cem linhas de instruções. Contudo, utilizando a instrução while, o código

166 www.k19.com.br

167 CONTROLE DE FLUXO

fica bem mais simples.

1 // Variável que indica o índice da próxima mensagem que deve exibida.
2 int i = 1;
3
4 while(i <= 100){
5 System.out.println("Mensagem número " + i);
6 i++;
7 }

Código Java 4.36: Exibindo a frase “Mensagem número x”

Até agora, o uso da instrução while parece ser mais uma conveniência do que uma necessidade.
Vamos mudar um pouco o exemplo anterior para verificar a importância das instruções de repetição.
Suponha que a frase “Mensagem número x” tenha de ser exibida um número aleatório de vezes, mas
que não seja possível determinar o número máximo de vezes que ela será executada. Por exemplo,
suponha que a mensagem deva ser exibida enquanto o valor sorteado pelo método random da classe
Math for menor do que 0.99999.

1 int i = 0;
2
3 while (Math.random () < 0.99999) {
4 System.out.println("Mensagem número " + (i + 1));
5 i++;
6 }

Código Java 4.37: Exibindo a frase “Mensagem número x” um número aleatório de vezes

A cada vez que é executado, o programa acima pode exibir uma quantidade diferente de mensa-
gens. Esse comportamento seria possível sem a utilização de uma instrução de repetição?

Simulação

Vamos simular a execução de um programa que gera bilhetes de loteria. Para não alongar muito
a simulação, apenas 3 bilhetes serão gerados. Esses bilhetes devem ser numerados sequencialmente
iniciando com o número 1000.

1 Na linha 1, a variável numero é declarada e inicializada com o valor 1000.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1000

2 Na linha 2, a condição do while é testada. Como o valor da variável numero é menor ou igual a
1002, a condição numero <= 1002 devolve true.

www.facebook.com/k19treinamentos 167

CONTROLE DE FLUXO 168

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1000

3 Como a condição da linha 2 devolveu true, o corpo do while será executado. Ao executar a linha
3, a mensagem “Bilhete 1000” é exibida no terminal.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1000

Bilhete 1000

4 Ao executar a linha 4, a variável numero é incrementada para 1001.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1001

Bilhete 1000

5 O fluxo de execução volta para a linha 2 e a condição do while é testada novamente. Mais uma
vez, o valor da variável numero é menor ou igual a 1002. Dessa forma, a condição numero <= 1002 devolve
true.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1001

Bilhete 1000

6 Como a condição da linha 2 devolveu true, o corpo do while será executado. Ao executar a linha
3, a mensagem “Bilhete 1001” é exibida no terminal.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1001

Bilhete 1000
Bilhete 1001

168 www.k19.com.br

169 CONTROLE DE FLUXO

7 Ao executar a linha 4, a variável numero é incrementada para 1002.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1002

Bilhete 1000
Bilhete 1001

8 Agora, o fluxo de execução volta para a linha 2 e a condição do while é testada novamente. O
valor da variável numero é igual a 1002. Dessa forma, a condição numero <= 1002 ainda devolve true.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1002

Bilhete 1000
Bilhete 1001

9 Como a condição da linha 2 devolveu true, o corpo do while será executado. Ao executar a linha
3, a mensagem “Bilhete 1002” é exibida no terminal.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1002

Bilhete 1000
Bilhete 1001
Bilhete 1002

10 Ao executar a linha 4, a variável numero é incrementada para 1003.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1003

Bilhete 1000
Bilhete 1001
Bilhete 1002

11 Mais uma vez, o fluxo de execução volta para a linha 2 para testar a condição do while. Final-
mente, o valor da variável numero não é menor ou igual a 1002. Dessa forma, a condição devolve false.

www.facebook.com/k19treinamentos 169

CONTROLE DE FLUXO 170

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1003

Bilhete 1000
Bilhete 1001
Bilhete 1002

12 Como a condição da linha 2 é falsa, o corpo do while não será mais executado. Portanto, o laço é
interrompido e o fluxo de execução “pula” para a linha 6. Ao executar essa linha, a mensagem “FIM”
é exibida no terminal.

1 int numero = 1000;
2 while(numero <= 1002) {
3 System.out.println("Bilhete " + numero);
4 numero ++;
5 }
6 System.out.println("FIM");

numero = 1003

Bilhete 1000
Bilhete 1001
Bilhete 1002
FIM

4.9 Instrução for

A instrução for é outra instrução de repetição e tem a mesma finalidade da instrução while. Po-
demos resolver problemas que envolvem repetições com a instrução while ou for. Veja a sintaxe da
instrução for:

1 for(inicialização; condição; atualização) {
2 bloco de comandos
3 }

No lugar da inicialização, devemos inserir os comandos que serão executados antes do início do
laço. No lugar da condição, devemos inserir uma expressão booleana que será verificada antes de
cada iteração (repetição) do laço. Assim, como na instrução while, o laço continuará a ser executado
enquanto essa condição for verdadeira. No lugar da atualização, devemos inserir os comandos que
serão executadas ao final de cada iteração do laço. A Figura 4.4 exibe o fluxograma da instrução for.

170 www.k19.com.br

171 CONTROLE DE FLUXO

condição

bloco de
comandos

false

true

atualização

inicialização

Figura 4.4: Fluxograma da instrução for

Importante

O termo iteração é utilizado quando nos referimos à repetição de uma ou mais ações. O
código do corpo de um laço pode ser executado diversas vezes. A cada vez que ele é executado,
dizemos que ocorre uma iteração.

www.facebook.com/k19treinamentos 171

CONTROLE DE FLUXO 172

Considere o seguinte trecho de código que utiliza a instrução de repetição while.

1 // inicialização
2 int i = 1;
3
4 // condição
5 while(i <= 100) {
6 // comandos
7 System.out.println("Mensagem número " + i);
8
9 // atualização
10 i++;
11 }

Podemos reescrever esse código com a instrução de repetição for.

1 // inicialização; condição; atualização
2 for(int i = 1; i <= 100; i++) {
3 // comandos
4 System.out.println("Mensagem número " + i);
5 }

Perceba que o código ficou mais compacto sem prejudicar a compreensão. Na linha em destaque,
declaramos e inicializamos a variável i (int i = 1), definimos a condição de execução (i <= 100) e
definimos que ao final de cada iteração devemos atualizar a variável i (i++). Diferentemente do while,
no for, a inicialização, a condição e a atualização do laço são definidas na mesma linha.

Mais Sobre

Vimos que a instrução for possui 3 argumentos: inicialização, condição e atualização.
Esses argumentos podem ser mais complexos do que os utilizados anteriormente. Podemos
declarar e/ou inicializar diversas variáveis na inicialização. Podemos definir condições mais
sofisticadas com uso dos operadores lógicos. Podemos atualizar o valor de diversas variáveis na
atualização. Veja um exemplo.

1 for(int i = 1, j = 2; i % 2 != 0 || j % 2 == 0; i += j, j += i) {
2 // comandos
3 }

Mais Sobre

Os três argumentos da instrução for (inicialização, condição e atualização) são opcio-
nais. Consequentemente, o seguinte código é válido apesar de ser estranho no primeiro mo-
mento.

1 for (;;) {
2 // comandos
3 }

O segundo argumento do for, a condição, possui o valor padrão true.

172 www.k19.com.br

173 CONTROLE DE FLUXO

Pare para pensar...

Sabendo que o segundo argumento do for, a condição, possui o valor padrão true, como
podemos interromper a execução do laço do exemplo a seguir?

1 for (;;) {
2 // comandos
3 }

Simulação

Novamente, vamos simular a execução de um programa que gera bilhetes de loteria. Mas agora,
vamos utilizar a instrução de repetição for. Para não alongar muito a simulação, apenas 3 bilhetes
serão gerados. Esses bilhetes devem ser numerados sequencialmente iniciando com o número 1000.

1 Na linha 1, a variável numero é declarada e inicializada com o valor 1000.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1000

2 Na linha 1, a condição do for é testada. Como o valor da variável numero é menor ou igual a 1002,
a condição devolve true.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1000

3 Como a condição da linha 1 devolveu true, o corpo do for será executado e a mensagem “Bilhete
1000” é exibida no terminal.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1000

Bilhete 1000

4 Agora, o fluxo de execução volta para a linha 1 e a atualização do for é executada. Dessa forma,
a variável numero é incrementada para 1001.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1001

Bilhete 1000

www.facebook.com/k19treinamentos 173

CONTROLE DE FLUXO 174

5 Depois da atualização, a condição do for é testada novamente. Mais uma vez, o valor da variável
numero é menor ou igual a 1002. Dessa forma, a condição devolve true.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1001

Bilhete 1000

6 Como a condição da linha 1 devolveu true, o corpo do for será executado. Ao executar a linha 2,
a mensagem “Bilhete 1001” é exibida no terminal.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1001

Bilhete 1000
Bilhete 1001

7 Mais uma vez, o fluxo de execução volta para a atualização do for da linha 1. Dessa forma, a
variável numero é incrementada para 1002.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1002

Bilhete 1000
Bilhete 1001

8 Agora, a condição do for é testada novamente. O valor da variável numero ainda é menor ou igual
a 1002. Dessa forma, a condição devolve true.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1002

Bilhete 1000
Bilhete 1001

9 Como a condição da linha 1 devolveu true, o corpo do for será executado. Ao executar a linha 2,
a mensagem “Bilhete 1002” é exibida no terminal.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1002

Bilhete 1000
Bilhete 1001
Bilhete 1002

10 Mais uma vez, o fluxo de execução retorna para executar a atualização do for da linha 1. Assim,
a variável numero é incrementada para 1003.

174 www.k19.com.br

175 CONTROLE DE FLUXO

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1003

Bilhete 1000
Bilhete 1001
Bilhete 1002

11 Agora, a condição do for é testada novamente. Finalmente, o valor da variável numero não é menor
ou igual a 1002. Dessa forma, a condição devolve false.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1003

Bilhete 1000
Bilhete 1001
Bilhete 1002

12 Como a condição do for da linha 1 é falsa, o laço é interrompido e o fluxo de execução “pula”
para a linha 4. Ao executar essa linha, a mensagem “FIM” é exibida no terminal.

1 for(int numero = 1000; numero <= 1002; numero ++) {
2 System.out.println("Bilhete " + numero);
3 }
4 System.out.println("FIM");

numero = 1003

Bilhete 1000
Bilhete 1001
Bilhete 1002
FIM

4.10 Instruções de Repetição Encadeadas

Considere o programa de computador que gera os ingressos das apresentações de um determi-
nado teatro. Esse teatro foi dividido em 4 setores com 200 cadeiras cada. Os ingressos devem conter
o número do setor e o número da cadeira. Podemos utilizar laços encadeados para implementar esse
programa.

1 for(int i = 1; i <= 4; i++) {
2 for(int j = 1; j <= 200; j++) {
3 System.out.println("SETOR: " + i + " CADEIRA: " + j);
4 }
5 }

No exemplo acima, para cada iteração do laço externo, há 200 iterações do laço interno. Portanto,
o corpo do laço interno executa 800 vezes. Esse valor é exatamente a quantidade de ingressos.

Além de encadear fors, podemos encadear whiles. Veja algumas variações do exemplo anterior.

1 int i = 1;
2 while(i <= 4) {
3 int j = 1;
4 while(j <= 200) {

www.facebook.com/k19treinamentos 175

CONTROLE DE FLUXO 176

5 System.out.println("SETOR: " + i + " CADEIRA: " + j);
6 j++;
7 }
8 i++;
9 }

1 int i = 1;
2 while(i <= 4) {
3 for(int j = 1; j <= 200; j++) {
4 System.out.println("SETOR: " + i + " CADEIRA: " + j);
5 }
6 i++;
7 }

1 for(int i = 1; i <= 4; i++) {
2 int j = 1;
3 while(j <= 200) {
4 System.out.println("SETOR: " + i + " CADEIRA: " + j);
5 j++;
6 }
7 }

Simulação

A seguir, simulamos a execução de dois laços do tipo for encadeados.

1 Na linha 1, temos a execução de um laço for. Primeiramente, ocorre a declaração de uma variável
do tipo int chamada i, que é inicializada com o valor 0.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

2 Em seguida, a condição do laço é verificada. Como o valor armazenado na variável i é 0, a
operação i <= 2 devolve true.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

3 Como a condição do laço da linha 1 é verdadeira, a linha 2 é executada. Nessa linha, temos
um laço for. Assim, sua execução começa pela inicialização. A variável j do tipo int é declarada e
inicializada com o valor de i+1. Como i armazena o valor 0, a variável j é inicializada com o valor 1.

176 www.k19.com.br

177 CONTROLE DE FLUXO

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

j = 1

4 Em seguida, a condição do laço da linha 2 é verificada. Como a variável j armazena o valor 1, a
operação j <= 2 devolve true.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

j = 1

5 Como a condição do laço da linha 2 é verdadeira, a linha 3 é executada. Assim, os valores arma-
zenados nas variáveis i e j são exibidos na saída padrão.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

j = 1

i = 0, j = 1

6 Após a execução do corpo do laço da linha 2, o fluxo é desviado para a atualização do laço. Assim,
a operação j++ é executada e a variável j passa a armazenar o valor 2.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

j = 2

i = 0, j = 1

7 Após a atualização do laço da linha 2, a condição desse laço é verificada. Como a variável j
armazena o valor 2, a operação j <= 2 devolve true.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

j = 2

i = 0, j = 1

8 Como a condição do laço da linha 2 é verdadeira, o corpo desse laço é executado. Assim, a
instrução da linha 3 é executada e os valores das variáveis i e j são exibidos na saída padrão.

www.facebook.com/k19treinamentos 177

CONTROLE DE FLUXO 178

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

j = 2

i = 0, j = 1
i = 0, j = 2

9 Após a execução do corpo do laço da linha 2, o fluxo é direcionado para a atualização do laço.
Assim, a operação j++ é executada e a variável j passa a armazenar o valor 3.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

j = 3

i = 0, j = 1
i = 0, j = 2

10 Após a atualização do laço da linha 2, a condição desse laço é verificada. Como a variável j
armazena o valor 3, o resultado da operação j <= 2 é false e a execução desse laço é encerrada.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 0

j = 3

i = 0, j = 1
i = 0, j = 2

11 Ao final da execução do corpo do laço da linha 1, o fluxo de execução é direcionado para a
atualização desse laço. Assim, a operação i++ é processada e o valor 1 é atribuído à variável i.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 1

i = 0, j = 1
i = 0, j = 2

12 Após a atualização do laço da linha 1, a condição desse laço é avaliada. Como o valor armazenado
em i é 1, a operação i <= 2 devolve true.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 1

i = 0, j = 1
i = 0, j = 2

178 www.k19.com.br

179 CONTROLE DE FLUXO

13 Como a condição do laço da linha 1 é verdadeira, o corpo desse laço é executado. Assim, o laço
da linha 2 é executado. O laço da linha 2 começa pela declaração e inicialização da variável j do tipo
int. Como a variável i armazena o valor 1, o resultado da operação i+1 é 2. Portanto, o valor 2 é
atribuído à variável j.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 1

j = 2

i = 0, j = 1
i = 0, j = 2

14 Em seguida, a condição do laço da linha 2 é testada. Como o valor armazenado na variável j é 2,
o resultado da operação j <= 2 é true.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 1

j = 2

i = 0, j = 1
i = 0, j = 2

15 Como a condição do laço da linha 2 é verdadeira, o corpo desse laço é executado. Assim, a
instrução da linha 3 é processada e os valores armazenados nas variáveis i e j são exibidos na saída
padrão.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 1

j = 2

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

16 Ao final da execução do corpo do laço da linha 2, o valor da variável j é atualizado. Como j

armazena o valor 2, a operação j++ atribui o valor 3 à variável j.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 1

j = 3

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

17 Após a atualização do laço da linha 2, sua condição é testada. Como a variável j armazena o
valor 3, a operação j <= 2 devolve false e a execução desse laço é encerrada.

www.facebook.com/k19treinamentos 179

CONTROLE DE FLUXO 180

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 1

j = 3

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

18 Depois da execução do corpo do laço da linha 1, o valor da variável i é atualizado. Como i

armazena o valor 1, a operação i++ atribui o valor 2 à variável i.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 2

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

19 Após a atualização do valor da variável i, a condição do laço da linha 1 é verificada. Como a
variável i armazena o valor 2, o resultado da operação i <= 2 é true.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 2

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

20 Como a condição do laço da linha 1 é verdadeira, o corpo desse laço é executado. Sendo assim,
o laço da linha 2 é processado. Isso começa com a declaração e inicialização da variável j. Como i

armazena o valor 2, a variável j é inicializada com o valor 3.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 2

j = 3

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

21 Em seguida, a condição do laço da linha 2 é testada. Como a variável j armazena o valor 3, a
operação j <= 2 devolve false. Assim, a execução desse laço é encerrada.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 2

j = 3

180 www.k19.com.br

181 CONTROLE DE FLUXO

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

22 Ao final da execução do corpo do laço da linha 1, o valor da variável i é atualizado. Como i

armazena o valor 2, essa variável passa a armazenar o valor 3 após a operação i++.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 3

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

23 Em seguida, a condição do laço da linha 1 é verificada. Como a variável i armazena o valor 3, a
operação i <= 2 devolve false. Assim, a execução do laço da linha 1 é encerrada.

1 for (int i = 0; i <= 2; i++) {
2 for (int j = i + 1; j <= 2; j++) {
3 System.out.println("i = " + i + ", j = " + j);
4 }
5 }

i = 3

i = 0, j = 1
i = 0, j = 2
i = 1, j = 2

4.11 Exercícios de Fixação

14 Na pasta controle-de-fluxo, crie um arquivo chamado LoremIpsum.java. Complete o código abaixo
com comandos de controle de fluxo. Implemente um programa que exiba no terminal a mensagem
“Lorem ipsum dolor sit amet” cinco vezes.

1 class LoremIpsum {
2 public static void main(String [] args) {
3 {
4 System.out.println("Lorem ipsum dolor sit amet");
5 }
6 }
7 }

Código Java 4.95: LoremIpsum.java

15 Compile o arquivo LoremIpsum.java e execute o programa.

16 Na pasta controle-de-fluxo, crie um arquivo chamado ExibeAte100.java. Complete o código abaixo
com comandos de controle de fluxo. Implemente um programa que exiba no terminal os números
de 1 até 100.

1 class ImprimeAte100 {
2 public static void main(String [] args) {

www.facebook.com/k19treinamentos 181

CONTROLE DE FLUXO 182

3 {
4 System.out.println(i);
5 }
6 }
7 }

Código Java 4.96: ImprimeAte100.java

17 Compile o arquivo ImprimeAte100.java e execute o programa.

18 Na pasta controle-de-fluxo, crie um arquivo chamado ImprimeAte100ExcetoMultiplo3.java. Com-
plete o código abaixo com comandos de controle de fluxo. Implemente um programa que exiba no
terminal os números de 1 até 100 exceto os números múltiplos de 3.

1 class ImprimeAte100ExcetoMultiplo3 {
2 public static void main(String [] args) {
3 {
4 if (i % 3 != 0) {
5 System.out.println(i);
6 }
7 }
8 }
9 }

Código Java 4.97: ImprimeAte100ExcetoMultiplo3.java

19 Compile o arquivo ImprimeAte100ExcetoMultiplo3.java e execute o programa.

20 Na pasta controle-de-fluxo, crie um arquivo chamado DivideMaiorInteiro.java. Complete o código
abaixo com comandos de controle de fluxo. Implemente um programa que declare e inicialize uma
variável que receberá o maior valor possível do tipo int. Divida o valor dessa variável por 2 até que o
resultado obtido seja inferior a 100. A cada iteração, exiba o valor dessa variável.

1 class DivideMaiorInteiro {
2 public static void main(String [] args) {
3 int numero = Integer.MAX_VALUE;
4 {
5 numero /= 2;
6 System.out.println(numero);
7 }
8 }
9 }

Código Java 4.98: DivideMaiorInteiro.java

21 Compile o arquivo DivideMaiorInteiro.java e execute o programa.

22 Na pasta controle-de-fluxo, crie um arquivo chamado GeradorDeIngressos.java. Complete o código
abaixo com comandos de controle de fluxo. Implemente um programa para gerar os ingressos das
apresentações de um teatro. Considere que esse teatro possui 4 setores e cada setor possui 20 lugares.

1 class GeradorDeIngressos {

182 www.k19.com.br

183 CONTROLE DE FLUXO

2 public static void main(String [] args) {
3 {
4 {
5 System.out.println("Setor: " + i + " Cadeira: " + j);
6 }
7 }
8 }
9 }

Código Java 4.99: GeradorDeIngressos.java

23 Compile o arquivo GeradorDeIngressos.java e execute o programa.

4.12 Instrução break

Considere um jogo de dados no qual o jogador ganha quando a soma dos números obtidos em
lançamentos consecutivos de um dado ultrapassar um determinado valor. Antes de começar o jogo,
é necessário definir a quantidade máxima de lançamentos e o valor que deve ser ultrapassado para
obter a vitória. Eventualmente, se o valor desejado for ultrapassado antes do último lançamento,
não é necessário continuar jogando o dado pois a vitória já está garantida. Podemos implementar
um programa de computador para simular a execução desse jogo. Nesse programa, podemos utilizar
a instrução break para interromper os lançamentos se o valor desejado for ultrapassado.

A instrução break não é uma instrução de repetição, mas está fortemente relacionada às instru-
ções while e for. Ela pode ser utilizada para forçar a parada de um laço.

No exemplo abaixo, a lógica para simular o jogo descrito anteriormente considera que a quanti-
dade máxima de lançamentos é 100 e o valor desejado é 360.

1 int soma = 0;
2
3 for(int i = 1; i <= 100; i++) {
4 System.out.println("Lançamento: " + i);
5
6 int numero = (int)(Math.random () * 6 + 1);
7
8 System.out.println("Número: " + numero);
9
10 soma += numero;
11
12 System.out.println("Soma: " + soma);
13
14 if(soma > 360) {
15 System.out.println("Você ganhou com " + i + " lançamentos");
16 break;
17 }
18 }
19 System.out.println("Jogue Novamente");

O trecho (int)(Math.random() * 6 + 1) gera um número inteiro entre 1 e 6. Esse trecho simula
o lançamento de um dado. A variável soma acumula os números gerados. A instrução if é utilizada
para verificar se a soma ultrapassou o valor desejado. Dentro do corpo do if, utilizamos o comando
break para interromper as iterações do laço for pois, quando a soma ultrapassa 360, a vitória já está
garantida.

www.facebook.com/k19treinamentos 183

CONTROLE DE FLUXO 184

Importante

A instrução break deve aparecer somente dentro do corpo de um laço ou dentro do
corpo de um switch. Veremos a instrução switch neste capítulo.

Importante

Quando a instrução break é utilizada dentro de uma cadeia de laços, ela interrompe o
laço mais interno. No exemplo abaixo, três laços encadeados foram definidos.

1 for(int i = 0; i < 10; i++) {
2 for(int j = 0; j < 10; j++) {
3 for(int k = 0; k < 10; k++) {
4 }
5 }
6 }

Se a instrução break for utilizada em qualquer lugar dentro do corpo do terceiro laço, esse laço
será interrompido.

1 for(int i = 0; i < 10; i++) {
2 for(int j = 0; j < 10; j++) {
3 for(int k = 0; k < 10; k++) {
4 ...
5 break; // interrompe o terceiro laço
6 ...
7 }
8 }
9 }

Caso contrário, se a instrução break for utilizada dentro do corpo do segundo laço mas fora do
terceiro laço, o segundo laço será interrompido.

1 for(int i = 0; i < 10; i++) {
2 for(int j = 0; j < 10; j++) {
3 ...
4 break; // interrompe o segundo laço
5 ...
6 for(int k = 0; k < 10; k++) {
7 }
8 }
9 }

Caso contrário, se a instrução break for utilizada dentro do primeiro laço mas fora do segundo
laço, o primeiro laço será interrompido.

1 for(int i = 0; i < 10; i++) {
2 ...
3 break; // interrompe o primeiro laço
4 ...
5 for(int j = 0; j < 10; j++) {
6 for(int k = 0; k < 10; k++) {
7 }
8 }
9 }

184 www.k19.com.br

185 CONTROLE DE FLUXO

Simulação

Vamos simular a execução do jogo de dados descrito anteriormente. Para não alongar muito a
simulação, considere que o número máximo de lançamentos é 2 e o valor que deve ser ultrapassado
é 7.

1 Na linha 1, a variável soma é declarada e inicializada com o valor 0.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 0

2 Na linha 2, a inicialização do for é executada. A variável i é criada e inicializada com o valor 1.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 0

i = 1

3 Na linha 2, a condição do for é testada. Como o valor da variável i é menor ou igual a 2, a
condição devolve true.

www.facebook.com/k19treinamentos 185

CONTROLE DE FLUXO 186

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 0

i = 1

4 Como a condição da linha 2 devolveu true, o corpo do for será executado. Ao executar a linha 3,
a mensagem “Lançamento: 1” é exibida no terminal.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 0

i = 1

Lançamento: 1

5 Na sequência, a linha 4 é executada. Um número aleatório entre 1 e 6 é gerado e armazenado na
variável numero. Suponha que o número 5 tenha sido gerado.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 0

i = 1

numero = 5

Lançamento: 1

6 Prosseguindo, a linha 6 é executada e a mensagem “Número: 5” é exibida no terminal.

186 www.k19.com.br

187 CONTROLE DE FLUXO

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 0

i = 1

numero = 5

Lançamento: 1
Número: 5

7 Adiante, a linha 7 é executada e o valor da variável numero é incrementado na variável soma. Dessa
forma, a variável soma passa a armazenar o valor 5.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 5

i = 1

numero = 5

Lançamento: 1
Número: 5

8 Na sequência, a linha 9 é executada e a mensagem “Soma: 5” é exibida no terminal.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 5

i = 1

numero = 5

Lançamento: 1
Número: 5
Soma: 5

www.facebook.com/k19treinamentos 187

CONTROLE DE FLUXO 188

9 Prosseguindo, a linha 10 é executada e a condição do if é testada. Como o valor da variável soma
não é maior do que 7, a condição devolve false.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 5

i = 1

numero = 5

Lançamento: 1
Número: 5
Soma: 5

10 Como a condição da linha 10 é falsa, o corpo do if não será executado e o fluxo de execução vai
para a atualização do for na linha 2. Dessa forma, a variável i é incrementada para 2.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 5

i = 2

Lançamento: 1
Número: 5
Soma: 5

11 Novamente, na linha 2, a condição do for é testada. Como o valor da variável i é menor ou igual
a 2, a condição devolve true.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 5

i = 2

188 www.k19.com.br

189 CONTROLE DE FLUXO

Lançamento: 1
Número: 5
Soma: 5

12 Como a condição da linha 2 devolveu true, o corpo do for será executado. Ao executar a linha 3,
a mensagem “Lançamento: 2” é exibida no terminal.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 5

i = 2

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2

13 Na sequência, a linha 4 é executada. Um número aleatório entre 1 e 6 é gerado e armazenado na
variável numero. Suponha que o número gerado tenha sido o 3.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 5

i = 2

numero = 3

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2

14 Prosseguindo, a linha 6 é executada e a mensagem “Número: 3” é exibida no terminal.

www.facebook.com/k19treinamentos 189

CONTROLE DE FLUXO 190

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 5

i = 2

numero = 3

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2
Número: 3

15 Adiante, a linha 7 é executada e o valor da variável numero é incrementado na variável soma. Dessa
forma, a variável soma passa a armazenar o valor 8.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 8

i = 2

numero = 3

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2
Número: 3

16 Na sequência, a linha 9 é executada e a mensagem “Soma: 8” é exibida no terminal.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 8

i = 2

numero = 3

190 www.k19.com.br

191 CONTROLE DE FLUXO

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2
Número: 3
Soma: 8

17 Prosseguindo, a linha 10 é executada e a condição do if é testada. Como o valor da variável soma
é maior do que 7, a condição devolve true.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 8

i = 2

numero = 3

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2
Número: 3
Soma: 8

18 Como a condição da linha 10 é verdadeira, o corpo do if será executado. Ao executar a linha 11,
a mensagem “Você ganhou com 2 lançamentos” é exibida no terminal.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 8

i = 2

numero = 3

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2
Número: 3
Soma: 8
Você ganhou com 2 lançamentos

19 Agora, a linha 12 é executada. Dessa forma, a instrução break interrompe o laço.

www.facebook.com/k19treinamentos 191

CONTROLE DE FLUXO 192

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 8

i = 2

numero = 3

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2
Número: 3
Soma: 8
Você ganhou com 2 lançamentos

20 Por fim, a linha 15 é executada e a mensagem “Jogue Novamente” é exibida no terminal.

1 int soma = 0;
2 for(int i = 1; i <= 2; i++) {
3 System.out.println("Lançamento: " + i);
4 int numero = (int)(Math.random () * 6 + 1);
5
6 System.out.println("Número: " + numero);
7 soma += numero;
8
9 System.out.println("Soma: " + soma);
10 if(soma > 7) {
11 System.out.println("Você ganhou com " + i + " lançamentos");
12 break;
13 }
14 }
15 System.out.println("Jogue Novamente");

soma = 8

Lançamento: 1
Número: 5
Soma: 5
Lançamento: 2
Número: 3
Soma: 8
Você ganhou com 2 lançamentos
Jogue Novamente

4.13 Instrução continue

Considere uma variação do jogo de dados proposto anteriormente. Nessa nova versão, somente
valores pares devem ser somados. Em outras palavras, os valores ímpares devem ser descartados.
Nesse caso, podemos utilizar a instrução continue. Essa instrução permite que, durante a execução
de um laço, uma determinada iteração seja abortada, fazendo com que o fluxo de execução continue
para a próxima iteração.

O código abaixo simula o jogo de dados discutido anteriormente com a variação proposta.

1 int soma = 0;

192 www.k19.com.br

193 CONTROLE DE FLUXO

2
3 for(int i = 1; i <= 100; i++) {
4 System.out.println("Lançamento: " + i);
5
6 int numero = (int)(Math.random () * 6 + 1);
7
8 System.out.println("Número: " + numero);
9
10 if(numero % 2 != 0) {
11 continue;
12 }
13
14 soma += numero;
15
16 System.out.println("Soma: " + soma);
17
18 if(soma > 180) {
19 System.out.println("Você ganhou com " + i + " lançamentos");
20 break;
21 }
22 }
23 System.out.println("Jogue Novamente");

No trecho destacado, calculamos o resto da divisão do número gerado aleatoriamente por dois.
Além disso, na condição do if, verificamos se esse valor é diferente de zero. Se essa condição for
verdadeira, significa que o número gerado aleatoriamente é ímpar e consequentemente deve ser
descartado. No corpo do if, utilizamos a instrução continue para abortar a iteração atual.

Importante

Quando aplicada a laços while, a instrução continue “pula” para a condição do laço. Por
outro lado, quando aplicada a laços for, ela “pula” para a atualização do laço.

Importante

Quando a instrução continue é utilizada dentro de uma cadeia de laços, ela afeta o laço
mais interno. No exemplo abaixo, três laços encadeados foram definidos.

1 for(int i = 0; i < 10; i++) {
2 for(int j = 0; j < 10; j++) {
3 for(int k = 0; k < 10; k++) {
4 }
5 }
6 }

Se a instrução continue for utilizada em qualquer lugar dentro do corpo do terceiro laço, esse laço
será afetado.

1 for(int i = 0; i < 10; i++) {
2 for(int j = 0; j < 10; j++) {
3 for(int k = 0; k < 10; k++) {
4 ...
5 continue; // afeta o terceiro laço
6 ...
7 }
8 }
9 }

Caso contrário, se a instrução continue for utilizada dentro do corpo do segundo laço mas fora

www.facebook.com/k19treinamentos 193

CONTROLE DE FLUXO 194

do terceiro laço, o segundo laço será afetado.

1 for(int i = 0; i < 10; i++) {
2 for(int j = 0; j < 10; j++) {
3 ...
4 continue; // afeta o segundo laço
5 ...
6 for(int k = 0; k < 10; k++) {
7 }
8 }
9 }

Caso contrário, se a instrução continue for utilizada dentro do terceiro laço mas fora do segundo
laço, o primeiro laço será afetado.

1 for(int i = 0; i < 10; i++) {
2 ...
3 continue; // afeta o laço mais externo
4 ...
5 for(int j = 0; j < 10; j++) {
6 for(int k = 0; k < 10; k++) {
7 }
8 }
9 }

Simulação

Vamos simular a execução de um programa que gera aleatoriamente dois números inteiros entre
1 e 100 e exibe no terminal apenas os ímpares.

1 Na linha 1, a variável i é declarada e inicializada com o valor 1.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 1

2 Na sequência, a condição do for é testada. Como valor da variável i é menor ou igual a 2, essa
condição devolve true.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 1

3 O corpo do for é executado porque a condição da linha 1 devolveu true. Ao executar a linha 2,

194 www.k19.com.br

195 CONTROLE DE FLUXO

um número aleatório entre 1 e 100 é gerado e armazenado na variável numero. Suponha que o valor
gerado seja 38.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 1

numero = 38

4 Na linha 3, verificamos se o resto da divisão do valor da variável numero por 2 é igual a 0. Como
essa variável está armazenando o valor 38, a condição do if devolve true, pois o resto da divisão de
38 por 2 é 0.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 1

numero = 38

5 Como a condição da linha 3 devolveu true, o corpo do if é executado. Ao executar a linha 4, a
instrução continue “pula” para a próxima iteração.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 1

numero = 38

6 Devido ao desvio causado pela instrução continue, o fluxo de execução vai para a atualização do
for na linha 1. Dessa forma, a variável i é incrementada para 2.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 2

7 Na sequência, a condição do for é testada. Como valor da variável i é menor ou igual a 2, essa
condição devolve true.

www.facebook.com/k19treinamentos 195

CONTROLE DE FLUXO 196

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 2

8 O corpo do for é executado porque a condição da linha 1 devolveu true. Ao executar a linha 2,
um número aleatório entre 1 e 100 é gerado e armazenado na variável numero. Suponha que o valor
gerado seja 97.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 2

numero = 97

9 Na linha 3, verificamos se o resto da divisão do valor da variável numero por 2 é igual a 0. Como
essa variável está armazenando o valor 97, a condição do if devolve false, pois o resto da divisão de
97 por 2 não é 0.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 2

numero = 97

10 Como a condição da linha 3 devolveu false, o corpo do if não é executado. Dessa forma, o fluxo
de execução vai direto para a linha 6 e o valor 97 é exibido no terminal.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 2

numero = 97

97

11 Prosseguindo, o fluxo de execução vai para a atualização do for na linha 1. Dessa forma, a
variável i é incrementada para 3.

196 www.k19.com.br

197 CONTROLE DE FLUXO

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 3

97

12 Na sequência, a condição do for é testada. Como valor da variável i não é menor ou igual a 2,
essa condição devolve false. Dessa forma, o laço é finalizado.

1 for(int i = 1; i <= 2; i++) {
2 int numero = (int)(Math.random () * 100 + 1);
3 if(numero % 2 == 0) {
4 continue;
5 }
6 System.out.println(i);
7 }

i = 3

97

4.14 Exercícios de Fixação

24 Na pasta controle-de-fluxo, crie um arquivo chamado JogoDeDado.java. Complete o código abaixo
com comandos de controle de fluxo. Implemente um programa que simula a execução de um jogo
de dados, no qual são permitidos 5 lançamentos. Caso a soma dos valores obtidos nos lançamen-
tos ultrapasse 19 em algum momento, o jogo deve ser interrompido e o jogador deve ser declarado
vencedor.

1 class JogoDeDado {
2 public static void main(String [] args) {
3 int soma = 0;
4 for(int i = 1; i <= 5; i++) {
5 System.out.println("Lançamento: " + i);
6 int numero = (int)(Math.random () * 6 + 1);
7
8 System.out.println("Número: " + numero);
9 soma += numero;
10
11 System.out.println("Soma: " + soma);
12 System.out.println("-----------------------");
13
14 if() {
15 System.out.println("Você ganhou com " + i + " lançamentos");
16 ;
17 }
18 }
19 }
20 }

Código Java 4.142: JogoDeDado.java

25 Compile o arquivo JodoDeDado.java e execute o programa.

www.facebook.com/k19treinamentos 197

CONTROLE DE FLUXO 198

26 Na pasta controle-de-fluxo, crie um arquivo chamado JogoDeDado2.java. Complete o código abaixo
com comandos de controle de fluxo. Implemente um programa que simula a execução de um jogo
de dados, no qual são permitidos 5 lançamentos. Caso a soma dos valores ímpares obtidos nos lança-
mentos ultrapasse 9 em algum momento, o jogo deve ser interrompido e o jogador deve ser declarado
vencedor.

1 class JogoDeDado2 {
2 public static void main(String [] args) {
3 int soma = 0;
4 for(int i = 1; i <= 5; i++) {
5 System.out.println("Lançamento: " + i);
6 int numero = (int)(Math.random () * 6 + 1);
7
8 System.out.println("Número: " + numero);
9
10 if(numero % 2 == 0) {
11 System.out.println("-----------------------");
12 ;
13 }
14
15 soma += numero;
16
17 System.out.println("Soma: " + soma);
18 System.out.println("-----------------------");
19
20 if() {
21 System.out.println("Você ganhou com " + i + " lançamentos");
22 ;
23 }
24 }
25
26 if() {
27 System.out.println("Você perdeu");
28 }
29 }
30 }

Código Java 4.143: JogoDeDado2.java

27 Compile o arquivo JodoDeDado2.java e execute o programa.

4.15 Blocos Sem Chaves

Normalmente, os blocos de código associados às instruções de decisão if e else ou às instruções
de repetição while e for são delimitados com chaves “{ }”. Contudo, as chaves podem ser omitidas
nos blocos que possuem apenas um comando. Veja alguns exemplos.

1 if(a < 10)
2 a = a * 2 + 1;
3 else
4 a = a / 2 + 1;

1 while(a < 10)
2 a = a * 2 + 1;

1 for(int i = 1; i < 10; i++)
2 a = a * 2 + 1;

198 www.k19.com.br

199 CONTROLE DE FLUXO

Lembre-se

Na linguagem Java, apenas blocos de código com apenas um comando podem ser associ-
ados às instruções de decisão if e else ou às instruções de repetição while e for.

Normalmente, não delimitar com chaves os blocos de código com dois ou mais comandos gera
erros de lógica ou até mesmo erros de compilação. Para evitar esses problemas, a utilização das
chaves mesmo em blocos com apenas um comando é recomendada.

Considere o seguinte trecho de código.

1 if(a < 10)
2 a = a * 2 + 1;
3 else {
4 if(a < 20)
5 a = a * 3 + 1;
6 else
7 a = a * 4 + 1;
8 }

O trecho em destaque, apesar de conter diversas linhas de código, é considerado um comando
único. Dessa forma, podemos omitir as chaves que envolvem esse trecho. Reescrevendo o código,
teríamos o seguinte resultado:

1 if(a < 10)
2 a = a * 2 + 1;
3 else if(a < 20)
4 a = a * 3 + 1;
5 else
6 a = a * 4 + 1;

Os leitores mais desavisados desse código podem assumir a existência da instrução else if. Con-
tudo, essa instrução não existe na linguagem Java. Na verdade, nesse exemplo, o segundo if pertence
ao corpo do primeiro else.

4.16 “Laços Infinitos”

Um laço é interrompido quando a condição de um laço for falsa ou quando utilizamos a instrução
break. Dessa forma, considere os seguintes laços.

1 int i = 1;
2 while(i < 10) {
3 System.out.println("K19");
4 }

1 for(int i = 1; i < 10;) {
2 System.out.println("K19");
3 }

Observe que a condição nunca devolverá o valor false. Como a variável i é inicializada com o
valor 1 e não é mais atualizada, a condição i < 10 será sempre verdadeira. Dessa forma, os laços
acima nunca serão interrompidos. Eles serão executados indefinidamente. Esses laços são chama-
dos popularmente de “laços infinitos”.

www.facebook.com/k19treinamentos 199

CONTROLE DE FLUXO 200

4.17 Instrução switch

A instrução switch é uma instrução de decisão. Ela permite definir o que deve ser executado
quando o valor de uma determinada chave for igual a certos valores. Veja a seguir a sintaxe dessa
instrução.

1 switch(chave) {
2 case expressao1: bloco1
3 case expressao2: bloco2
4 case expressao3: bloco3
5 default: bloco4
6 }

Código Java 4.151: Sintaxe da instrução switch

A chave é uma expressão que pode ser de algum dos seguintes tipos primitivos: char, byte, short
ou int. Ela também pode ser de algum dos seguintes tipos não primitivos: Character, Byte, Short ou
Integer. Nesse caso, o autoboxing é utilizado para converter o valor não primitivo da chave para
primitivo. Também podemos utilizar chaves do tipo String. Por fim, o tipo da chave pode ser um
enum type. Neste livro, não abordaremos os enum types.

Para cada caso, exceto o caso padrão (default), é necessário definir uma expressão constante
compatível com o tipo da chave do switch. Não é permitido definir dois casos com expressões de
mesmo valor ou um caso com expressão igual a null. Também não é permitido definir mais do que
um caso padrão.

Quando o valor da chave for igual ao valor da “expressao1”, todos os blocos serão executados.
Quando o valor da chave for igual ao valor da “expressao2”, os blocos 2, 3 e 4 serão executados.
Quando o valor da chave for igual ao valor da “expressao3”, os blocos 3 e 4 serão executados. Quando
o valor da chave não for igual ao valor da “expressao1”, “expressao2” ou “expressao3”, apenas o bloco
4 será executado.

Mais Sobre

O número de casos que podem ser declarados em um switch é ilimitado. Além disso, o
caso padrão (default) é opcional. Tecnicamente, um switch sem nenhum caso é válido. Portanto,
o código a seguir está correto.

1 int x = 1;
2 switch(x) {
3
4 }

Código Java 4.152: Um switch vazio

No exemplo abaixo, a variável nota é a chave do switch. Essa variável é do tipo char e foi inicializada
com o valor ‘A’. Como o valor da chave é igual ao valor da expressão associada ao primeiro caso do
switch, as mensagens “Ótimo”, “Regular” e “Ruim” serão exibidas na saída padrão.

1 char nota = ’A’;
2 switch(nota) {
3 case ’A’: System.out.println("Ótimo");
4 case ’B’: System.out.println("Regular");
5 case ’C’: System.out.println("Ruim");

200 www.k19.com.br

201 CONTROLE DE FLUXO

6 }

Para evitar que os blocos associados aos casos subsequentes sejam executados, geralmente, po-
demos utilizar a instrução break. Agora, no exemplo abaixo, somente a mensagem “Ótimo” será exi-
bida na saída padrão. A instrução break do último bloco não é necessária. Contudo, normalmente,
ela é adicionada.

1 char nota = ’A’;
2 switch(nota) {
3 case ’A’: System.out.println("Ótimo"); break;
4 case ’B’: System.out.println("Regular"); break;
5 case ’C’: System.out.println("Ruim"); break;
6 }

Código Java 4.154: Utilizando a instrução break em conjunto com a instrução switch

O mesmo bloco pode ser associado a vários casos. No exemplo abaixo, se a nota for ‘A’ ou ‘B’, a
mensagem “Ótimo” será exibida na saída padrão. Se a nota for ‘C’, a mensagem “Regular” será exibida
na saída padrão. Se a nota for ‘D’ ou ‘E’, a mensagem “Ruim” será exibida na saída padrão.

1 char nota = ’A’;
2 switch(nota) {
3 case ’A’: case ’B’: System.out.println("Ótimo"); break;
4 case ’C’: System.out.println("Regular"); break;
5 case ’D’: case ’E’: System.out.println("Ruim"); break;
6 }

Código Java 4.155: Um bloco associado a vários casos

Simulação

Nessa simulação, mostraremos um exemplo de utilização da instrução switch.

1 Ao executar a linha 1, uma variável do tipo int chamada tipoDeSeguro é declarada e inicializada
com o valor 2.

1 int tipoDeSeguro = 2;
2 switch(tipoDeSeguro) {
3 case 1: System.out.println("CARRO RESERVA");
4 case 2: System.out.println("GUINCHO E VIDROS");
5 case 3: System.out.println("ROUBO E COLISÃO");
6 }

tipoDeSeguro = 2

2 Em seguida, a linha 2 é executada. A instrução switch verifica o valor armazenado na variável
tipoDeSeguro para decidir qual case deve ser selecionado.

1 int tipoDeSeguro = 2;
2 switch(tipoDeSeguro) {
3 case 1: System.out.println("CARRO RESERVA");
4 case 2: System.out.println("GUINCHO E VIDROS");
5 case 3: System.out.println("ROUBO E COLISÃO");
6 }

tipoDeSeguro = 2

www.facebook.com/k19treinamentos 201

CONTROLE DE FLUXO 202

3 Como o valor da variável tipoDeSeguro armazena o valor 2, o fluxo de execução é direcionado para
a linha 4. Na execução dessa linha, a mensagem “GUINCHO E VIDROS” é exibida na saída padrão.

1 int tipoDeSeguro = 2;
2 switch(tipoDeSeguro) {
3 case 1: System.out.println("CARRO RESERVA");
4 case 2: System.out.println("GUINCHO E VIDROS");
5 case 3: System.out.println("ROUBO E COLISÃO");
6 }

tipoDeSeguro = 2

GUINCHO E VIDROS

4 A próxima linha a ser executada é a linha 5. Ao executar essa linha, a mensagem “ROUBO E
COLISÃO” será exibida na saída padrão.

1 int tipoDeSeguro = 2;
2 switch(tipoDeSeguro) {
3 case 1: System.out.println("CARRO RESERVA");
4 case 2: System.out.println("GUINCHO E VIDROS");
5 case 3: System.out.println("ROUBO E COLISÃO");
6 }

tipoDeSeguro = 2

GUINCHO E VIDROS
ROUBO E COLISÃO

4.18 Instrução do-while

A instrução de repetição do-while é análoga à instrução while. A sintaxe do do-while é:

1 do {
2 bloco de comandos
3 } while(condição);

Código Java 4.160: Sintaxe da instrução do-while

A condição deve ser um valor do tipo boolean ou do tipo Boolean. Os valores do tipo Boolean são
convertidos para boolean através do autoboxing. Veja na Figura 4.5 o fluxograma da instrução do-
while.

202 www.k19.com.br

203 CONTROLE DE FLUXO

condição

bloco de
comandos

falsetrue

Figura 4.5: Fluxograma da instrução do-while

No exemplo abaixo, a variável x que é do tipo int foi inicializada com o valor 10. Na primeira itera-
ção, a condição do while é falsa, pois o valor da variável x não é menor do que 10. Consequentemente,
o bloco do while não será executado nem ao menos uma vez.

1 int x = 10;
2 while(x < 10) {
3 System.out.println(x);
4 x++;
5 }

Código Java 4.161: Um while que não executa

No exemplo abaixo, substituímos a instrução while pela instrução do-while. Nesse caso, o bloco
do laço sempre será executado ao menos uma vez, pois a condição do laço é verificada somente no
final das iterações e não no começo como ocorre no while.

1 int x = 10;
2 do {
3 System.out.println(x);
4 x++;
5 } while(x < 10);

Código Java 4.162: Utilizando a instrução do-while

Simulação

Nessa simulação, mostraremos um exemplo de utilização da instrução do-while.

1 Na execução da linha 1, uma variável do tipo int chamada a é declarada e inicializada com o
valor 1.

www.facebook.com/k19treinamentos 203

CONTROLE DE FLUXO 204

1 int a = 1;
2 do {
3 System.out.println(a);
4 a++;
5 } while(a < 3);
6 System.out.println("FIM");

a = 1

2 Em seguida, a linha 3 é executada e o valor armazenado na variável a é exibido na saída padrão.

1 int a = 1;
2 do {
3 System.out.println(a);
4 a++;
5 } while(a < 3);
6 System.out.println("FIM");

a = 1

1

3 Agora, a linha 4 é executada e o valor armazenado na variável a é atualizado com o operador ++

e essa variável passa a armazenar o valor 2.

1 int a = 1;
2 do {
3 System.out.println(a);
4 a++;
5 } while(a < 3);
6 System.out.println("FIM");

a = 2

1

4 Na sequência, a linha 5 é executada. Como a variável a armazena o valor 2, a operação a < 3

devolve true. Sendo assim, o laço continua executando.

1 int a = 1;
2 do {
3 System.out.println(a);
4 a++;
5 } while(a < 3);
6 System.out.println("FIM");

a = 2

1

5 Continuando a execução, a linha 3 é processada e o valor armazenado na variável a é exibido na
saída padrão.

1 int a = 1;
2 do {
3 System.out.println(a);
4 a++;
5 } while(a < 3);
6 System.out.println("FIM");

a = 2

1
2

204 www.k19.com.br

205 CONTROLE DE FLUXO

6 Com a execução da linha 4, o valor da variável a é atualizado com o operador ++ e essa variável
passa a armazenar o valor 3.

1 int a = 1;
2 do {
3 System.out.println(a);
4 a++;
5 } while(a < 3);
6 System.out.println("FIM");

a = 3

1
2

7 Agora, a linha 5 é executada. Como a variável a armazena o valor 3, a operação a < 3 devolve
false. Sendo assim, o laço terminará.

1 int a = 1;
2 do {
3 System.out.println(a);
4 a++;
5 } while(a < 3);
6 System.out.println("FIM");

a = 3

1
2

8 Por fim, a linha 6 é executada e a mensagem “FIM” é exibida na saída padrão.

1 int a = 1;
2 do {
3 System.out.println(a);
4 a++;
5 } while(a < 3);
6 System.out.println("FIM");

a = 3

1
2
FIM

4.19 Unreachable Code

O compilador tenta identificar instruções que nunca seriam executadas. Algumas dessas ins-
truções geram o erro de compilação unreachable code. No exemplo abaixo, a instrução contador++

nunca seria executada, pois ela é precedida pela instrução break. Nesse caso, ocorreria um unreacha-
ble code.

1 int contador = 0;
2 while(contador < 100){
3 break;
4 contador ++; // erro de compilação - unreachable code
5 }

Analogamente, o mesmo problema ocorre no código abaixo. A variável contador foi inicializada
com o valor 10. Como essa variável é final, não podemos alterar o seu conteúdo. Dessa forma, o
corpo do while nunca seria executado. Nesse caso, novamente ocorreria um unreachable code. Se a
variável contador não fosse final, o código compilaria sem problemas.

www.facebook.com/k19treinamentos 205

CONTROLE DE FLUXO 206

1 final int contador = 10;
2 while(contador < 10) { // erro de compilação - unreachable code
3 System.out.println(contador);
4 }

Também podemos observar esse problema no exemplo abaixo. A variável contador foi iniciali-
zada com o valor 0. Novamente, como essa variável é final, não podemos alterar o seu conteúdo.
Dessa forma, a condição do while é sempre verdadeira. Como não há nada que interrompa o laço, as
linhas depois do corpo do while nunca seriam executadas. Nesse caso, mais uma vez ocorreria um
unreachable code.

1 final int contador = 0;
2 while(contador < 10) {
3 System.out.println(contador);
4 }
5 System.out.println("FIM"); // erro de compilação - unreachable code

Nem sempre uma instrução que nunca poderá ser executada gera um unreachable code. Consi-
dere o exemplo abaixo. A variável contador foi inicializada com o valor 10. O conteúdo dessa variável
não pode ser alterado, pois ela é final. Dessa forma, a condição do if é sempre falsa e corpo do
if nunca será executado. Contudo, o tratamento da instrução if é diferenciado e o código abaixo
compilaria sem gerar um unreachable code.

1 final int contador = 10;
2 if(contador < 10) {
3 System.out.println(contador);
4 }

Mais Sobre

Por quê não ocorre unreachable code quando a condição de um if é certamente falsa?

Não ocorre unreachable code quando a condição de um if é certamente falsa para permitir a
utilização das chamadas flag variables. Por exemplo, as flags variables podem ser utilizadas
para facilitar a análise de um programa.

Geralmente, na fase de análise de um programa, é muito útil exibir mensagens informativas na
saída padrão. Essas mensagens não devem ser exibidas na fase de produção, ou seja, quando os
usuários estiverem utilizando o programa.

Dessa forma, é importante ter a capacidade de habilitar e desabilitar as mensagens de análise.
Podemos utilizar uma variável booleana para isso.

1 final boolean debug = true;
2 if(debug) {
3 System.out.println("Mensagem de Análise");
4 }

1 final boolean debug = false;
2 if(debug) {
3 System.out.println("Mensagem de Análise");
4 }

Quando o valor da variável debug é false, as mensagens não são exibidas. Caso contrário, ou seja,

206 www.k19.com.br

207 CONTROLE DE FLUXO

quando o valor da variável debug é true, as mensagens são exibidas.

Essa é uma prática comum em diversas linguagens de programação. Por isso, a linguagem Java
trata de forma diferenciada a instrução if em relação ao erro de compilação unreachable code.

Curiosidade

Em inglês, a palavra bug significa inseto. Um erro em um programa de computador cos-
tuma ser chamado de bug. A origem desse termo é popularmente atribuída à cientista Admiral
Grace Hopper. Na década de 1940, enquanto trabalhava no computador Mark II, Grace Hoo-
per encontrou uma mariposa presa dentro de uma dos relês desse computador, o que impedia
o seu funcionamento.

O processo de busca e eliminação dos erros (bugs) de um programa é chamado de debug ou
depuração.

4.20 Exercícios de Fixação

28 Na pasta controle-de-fluxo, crie um arquivo chamado BartChalkboard.java. Complete o código
abaixo com comandos de controle de fluxo. Implemente um programa para ajudar o Bart Simpson
a cumprir o seu castigo. Esse programa deve exibir a mensagem “I WILL NOT XEROX MY BUTT”
indefinidamente.

1 class BartChalkboard {
2 public static void main(String [] args) {
3
4 System.out.println("I WILL NOT XEROX MY BUTT");
5 }
6 }

Código Java 4.177: BartChalkboard.java

29 Compile e o arquivo BartChalkboard.java execute o programa.

4.21 Erro: Não utilizar condições booleanas

Um erro de compilação comum em Java ocorre quando não utilizamos condições booleanas nas
instruções if, while ou for.

1 class Programa {
2 public static void main(String [] args) {
3 double a = Math.random ();
4
5 double b = Math.random ();
6
7 if(a + b) {
8 a *= 2;
9 } else {
10 a /= 2;
11 }

www.facebook.com/k19treinamentos 207

CONTROLE DE FLUXO 208

12 }
13 }

Código Java 4.178: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :7: error: incompatible types
if(a + b) {

^
required: boolean
found: double

1 error

Terminal 4.88: Erro de compilação

4.22 Erro: Else sem if

Um erro de compilação comum em Java ocorre quando o comando else não está associado ao
comando if.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4 if(a < 10)
5 System.out.println(a);
6 System.out.println("Menor");
7 else
8 System.out.println(a);
9 System.out.println("Maior");
10 }
11 }

Código Java 4.179: Programa.java

Observe que o corpo do comando if possui apenas uma instrução, já que as chaves não foram
utilizadas. Dessa forma, a instrução System.out.println("Menor") separa o comando else do if.

Programa.java :7: error: ’else ’ without ’if’
else
^

1 error

Terminal 4.89: Erro de compilação

4.23 Erro: Else com condição

Um erro de compilação em Java ocorre quando a instrução else é seguida por uma condição.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4 if(a < 10)
5 System.out.println("Menor");
6 else(a > 10)
7 System.out.println("Maior");
8 }
9 }

208 www.k19.com.br

209 CONTROLE DE FLUXO

Código Java 4.180: Programa.java

No código acima, ocorre um erro de compilação na linha 6, pois a instrução else não admite uma
condição como na instrução if.

Programa.java :6: error: not a statement
else(a > 10)

^
Programa.java :6: error: ’;’ expected

else(a > 10)
^

2 errors

Terminal 4.90: Erro de compilação

4.24 Erro: Ponto e vírgula excedente

Um erro de lógica comum em Java pode ocorrer quando o caractere “;” é adicionado em excesso.

1 class Programa {
2 public static void main(String [] args) {
3 for(int i = 0; i < 10; i++) ; {
4 System.out.println("**************");
5 }
6 }
7 }

Código Java 4.181: Programa.java

Observe o caractere “;” depois dos argumentos do for. Na verdade, não há erros de compilação
nesse código. Contudo, podemos considerar que há um erro de lógica, pois o laço não tem corpo. O
bloco depois do for executará apenas uma vez pois não está associado ao laço.

Veja o resultado da execução desse programa.

Terminal 4.91: Erro de lógica

4.25 Erro: “Laço infinito”

Um erro de lógica comum em Java pode ocorrer quando a condição de um laço é sempre verda-
deira.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4 while(a < 10) {
5 System.out.println(a);
6 }
7 }
8 }

Código Java 4.182: Programa.java

www.facebook.com/k19treinamentos 209

CONTROLE DE FLUXO 210

Observe que a condição a < 10 é sempre verdadeira porque a variável a foi inicializada com o
valor 1 e ela nunca é alterada. Consequentemente, o corpo do while será executado indefinidamente.

4.26 Erro: Chave do switch com tipos incompatíveis

Um erro de compilação comum em Java ocorre quando a chave da instrução switch é uma ex-
pressão de um tipo incompatível.

1 class Programa {
2 public static void main(String [] args) {
3 double a = 1;
4
5 switch(a) {
6 case 0.0: System.out.println (0);
7 case 1.0: System.out.println (1);
8 }
9 }
10 }

Código Java 4.183: Programa.java

No código acima, ocorre um erro de compilação na linha 5, pois a chave da instrução switch é do
tipo double.

Programa.java :5: error: incompatible types: possible lossy conversion from double to int
switch(a) {

^
1 error

Terminal 4.92: Erro de compilação

4.27 Erro: Casos do switch com expressões não constantes

Em Java, uma expressão constante é definida como uma expressão que envolve apenas valores
literais, variáveis do tipo final ou enum types. Um erro de compilação comum ocorre quando um
dos casos da instrução switch não é uma expressão constante.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5
6 switch(a) {
7 case 1: System.out.println (1);
8 case b: System.out.println(b);
9 }
10 }
11 }

Código Java 4.184: Programa.java

No código acima, ocorre um erro de compilação na linha 8, pois a expressão do segundo caso da
instrução switch não é constante.

Programa.java :8: error: constant expression required
case b: System.out.println(b);

^

210 www.k19.com.br

211 CONTROLE DE FLUXO

1 error

Terminal 4.93: Erro de compilação

4.28 Erro: Break ou continue fora de um laço

Um erro de compilação ocorre quando a instrução break é utilizada fora de um laço ou de um
switch ou quando a instrução continue é utilizada fora de um laço. Confira o exemplo abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4
5 if(a == 1) {
6 System.out.println("Igual a 1");
7 break;
8 }
9 else {
10 System.out.println("Diferente de 1");
11 continue;
12 }
13 }
14 }

Código Java 4.185: Programa.java

No código acima, ocorrem erros de compilação nas linhas 7 e 11.

Programa.java :7: error: break outside switch or loop
break;
^

Programa.java :11: error: continue outside of loop
continue;
^

2 errors

Terminal 4.94: Erro de compilação

4.29 Erro: Usar vírgula ao invés de ponto e vírgula no laço for

Ocorrem erros de compilação ocorre quando os argumentos do laço for são separados por vírgula
ao invés de ponto e vírgula.

1 class Programa {
2 public static void main(String [] args) {
3 for(int i = 0, i < 10, i++) {
4 System.out.println(i);
5 }
6 }
7 }

Código Java 4.186: Programa.java

No código acima, ocorrem erros de compilação na linha 3.

Programa.java :3: error: ’;’ expected
for(int i = 0, i < 10, i++) {

^
Programa.java :3: error: illegal start of type

www.facebook.com/k19treinamentos 211

CONTROLE DE FLUXO 212

for(int i = 0, i < 10, i++) {
^

Programa.java :3: error: illegal start of expression
for(int i = 0, i < 10, i++) {

^
Programa.java :3: error: ’;’ expected

for(int i = 0, i < 10, i++) {
^

Programa.java :3: error: illegal start of expression
for(int i = 0, i < 10, i++) {

^
5 errors

Terminal 4.95: Erro de compilação

A vírgula só pode ser utilizada na separação de inicializações de variáveis no primeiro argumento
do for ou na separação de instruções válidas no terceiro argumento do for.

4.30 Exercícios Complementares

1 Na pasta controle-de-fluxo, crie um arquivo chamado ComparaValores.java. Complete o código
abaixo com comandos de controle de fluxo. Esse programa deve gerar dois números aleatórios e exi-
bir o valor desses números. Além disso, esse programa deve exibir a mensagem “Primeiro > Segundo”
se o primeiro número for maior do que o segundo, a mensagem “Segundo > Primeiro” se o segundo
número for maior do que o primeiro e a mensagem “Primeiro = Segundo” se o primeiro número for
igual ao segundo.

1 class ComparaValores {
2 public static void main(String [] args) {
3 double primeiro = Math.random ();
4 double segundo = Math.random ();
5
6 System.out.println("Primeiro: " + primeiro);
7 System.out.println("Segundo: " + segundo);
8
9
10 }
11 }

Código Java 4.187: ComparaValores.java

2 Na pasta controle-de-fluxo, crie um arquivo chamado BlocoDeAstericos.java. Complete o código
abaixo com comandos de controle de fluxo. Esse programa deve exibir o seguinte padrão.

1 class BlocoDeAstericos {
2 public static void main(String [] args) {
3
4 }
5 }

212 www.k19.com.br

213 CONTROLE DE FLUXO

Código Java 4.188: BlocoDeAstericos.java

3 Na pasta controle-de-fluxo, crie um arquivo chamado TrianguloDeAstericos.java. Complete o
código abaixo com comandos de controle de fluxo. Esse programa deve exibir o seguinte padrão.

*
**

1 class TrianguloDeAstericos {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 4.189: TrianguloDeAstericos.java

4 Na pasta controle-de-fluxo, crie um arquivo chamado TresTriangulosDeAstericos.java. Complete
o código abaixo com comandos de controle de fluxo. Esse programa deve exibir o seguinte padrão.

*
**

*
**

*
**

1 class TresTriangulosDeAstericos {
2 public static void main(String [] args) {
3
4 }

www.facebook.com/k19treinamentos 213

CONTROLE DE FLUXO 214

5 }

Código Java 4.190: TresTriangulosDeAstericos.java

5 Na pasta controle-de-fluxo, crie um arquivo chamado LosangoDeAstericos.java. Complete o código
abaixo com comandos de controle de fluxo. Esse programa deve exibir o seguinte padrão.

1 class LosangoDeAstericos {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 4.191: LosangoDeAstericos.java

6 Na pasta controle-de-fluxo, crie um arquivo chamado TresLosangosDeAstericos.java. Complete o
código abaixo com comandos de controle de fluxo. Esse programa deve exibir o seguinte padrão.

1 class TresLosangosDeAstericos {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 4.192: TresLosangosDeAstericos.java

214 www.k19.com.br

215 CONTROLE DE FLUXO

7 Na pasta controle-de-fluxo, crie um arquivo chamado CartoesDeEstacionamento.java. Complete o
código abaixo com comandos de controle de fluxo. Para controlar o estacionamento de um condo-
mínio, devemos implementar um programa em Java para gerar os cartões das vagas dos moradores.
Nos cartões, é necessário constar o número do bloco e o número do apartamento. Nesse condômino,
há três blocos numerados de 1 a 3. Em cada bloco, há 9 andares. Em cada andar, há 4 apartamentos.
No primeiro andar, os números dos apartamentos são: 11, 12, 13 e 14. No segundo andar, os números
dos apartamentos são: 21, 22, 23 e 24. Nos outros andares, a lógica de numeração é a mesma.

1 class CartoesDeEstacionamento {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 4.193: CartoesDeEstacionamento.java

8 Na pasta controle-de-fluxo, crie um arquivo chamado Tabuada.java. Complete o código abaixo
com comandos de controle de fluxo. Escreva um programa em Java que exiba na saída padrão a
tabuada dos números de 1 a 10 de acordo com o padrão abaixo.

1x1 = 1
1x2 = 2
1x3 = 3
...
10x8 = 80
10x9 = 90
10x10 = 100

1 class Tabuada {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 4.194: Tabuada.java

9 Na pasta controle-de-fluxo, crie um arquivo chamado Piramide.java. Complete o código abaixo
com comandos de controle de fluxo. Escreva um programa que desenhe uma pirâmide de asteriscos.
A saída do seu programa deve seguir o padrão abaixo.

*

1 class Piramide {
2 public static void main(String [] args) {
3
4 }
5 }

www.facebook.com/k19treinamentos 215

CONTROLE DE FLUXO 216

Código Java 4.195: Piramide.java

10 Na pasta controle-de-fluxo, crie um arquivo chamado ArvoreNatal.java. Complete o código abaixo
com comandos de controle de fluxo. Escreva um programa que exibe uma árvore de natal de acordo
com o padrão abaixo.

*

1 class ArvoreNatal {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 4.196: ArvoreNatal.java

11 Na pasta controle-de-fluxo, crie um arquivo chamado ContaUns.java. Complete o código abaixo
com comandos de controle de fluxo. Crie um programa em Java que gere e exiba na saída padrão
um número aleatório. Além disso, esse programa deve contabilizar a quantidade de dígitos “1” do
número aleatório e exibir essa quantidade na saída padrão. Complete o código abaixo.

1 class ContaUns {
2 public static void main(String [] args) {
3 double numero = Math.random ();
4 System.out.println(numero);
5
6 String s = "" + numero;
7 int resposta = 0;
8
9
10
11 System.out.println(resposta);
12 }
13 }

Código Java 4.197: ContaUns.java

12 Na pasta controle-de-fluxo, crie um arquivo chamado JogoDaSomaImpar.java. Complete o código
abaixo com comandos de controle de fluxo. Considere um jogo no qual o jogador lança um dado

216 www.k19.com.br

217 CONTROLE DE FLUXO

10 vezes. O jogador ganha se a soma dos valores obtidos nos lançamentos for ímpar. Se o número
6 for sorteado 2 vezes, o jogador perde imediatamente. O número 1 deve ser desconsiderado no
somatório. Implemente um programa em Java para simular a execução desse jogo.

1 class JogoDaSomaImpar {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 4.198: JogoDaSomaImpar.java

4.31 Resumo

1 Os programas de computador utilizam as instruções de decisão para determinar se um bloco
de código será executado ou não de acordo com determinada condição.

2 Para utilizar a instrução de decisão if, devemos definir uma condição e um corpo. O corpo é o
bloco de código que será executado se e somente se a condição for true.

3 Para utilizar a instrução else, devemos definir um corpo. Essa instrução sempre está associada
à instrução if. O corpo do else é executado se e somente se a condição do if correspondente for
false.

4 Instruções de decisão podem ser encadeadas. Em outras palavras, podemos definir ifs e elses
dentro de ifs ou elses.

5 Os programas de computador utilizam as instruções de repetição para executar repetidas vezes
um determinado bloco de código.

6 Para utilizar a instrução de repetição while, devemos definir uma condição e um corpo. O
corpo é executado se e somente se a condição for true. Após cada execução do corpo, a condição é
reavaliada para decidir se o corpo deve ser executado novamente.

7 Para utilizar a instrução de repetição for, devemos definir uma inicialização, uma condição,
uma atualização e um corpo. Primeiro, a inicialização é executada e em seguida a condição é ava-
liada. Se a condição for true, o corpo é executado. Caso contrário, a execução do laço é encerrada.
Após cada execução do corpo, a atualização é processada e a condição é reavaliada para decidir se o
corpo deve ser executado novamente.

8 Instruções de repetição podem ser encadeadas. Em outra palavras, podemos definir whiles e
fors dentro de whiles ou fors.

www.facebook.com/k19treinamentos 217

CONTROLE DE FLUXO 218

9 A instrução break interrompe a execução de um laço.

10 A instrução continue interrompe a execução de uma iteração. No while, o continue desvia o fluxo
de execução para a condição. No for, o continue desvia o fluxo de execução para a atualização.

11 Quando o corpo do if possui apenas um comando, ele não precisa ser delimitado com chaves.
A mesma regra vale para o else, while, do-while e for.

12 O corpo de um laço do-while sempre é executado pelo menos uma vez.

13 Se a condição de um laço é sempre true, o corpo desse laço será executado repetidamente sem
parar (“laços infinitos”).

4.32 Prova

1 As instruções de controle de fluxo são utilizadas para

a) armazenar dados.

b) manipular os dados armazenados nas variáveis.

c) controlar a sequência de instruções que devem ser executadas.

d) determinar se o código fonte está correto.

e) evitar erros de execução.

2 Qual alternativa está correta?

a) if e else são instruções de decisão.

b) if e while são instruções de decisão.

c) else e while são instruções de decisão.

d) while e for são instruções de decisão.

e) if e for são instruções de decisão.

3 Qual alternativa está correta?

a) No if, a condição pode ser um valor booleano ou numérico.

218 www.k19.com.br

219 CONTROLE DE FLUXO

b) No if, a condição só pode ser um valor numérico.

c) No if, a condição só pode ser um valor booleano.

d) No if, a condição pode ser uma string ou um valor numérico.

e) No if, a condição pode ser qualquer coisa.

4 Qual alternativa está correta?

a) Para cada if, deve existir um else.

b) O corpo do else é executado quando a condição do if é verdadeira.

c) O corpo do if é executado quando a condição é falsa.

d) Não podemos definir ifs no corpo dos elses.

e) Para cada else, deve existir um if.

5 Considere o seguinte código.

1 int a = 1;
2 int b = 1;
3
4 if(a++ > b) {
5 if(a > --b) {
6 a = 10;
7 } else
8 a = 11;
9 a = 12;
10 } else
11 if(a > --b)
12 a = 13;
13 else {
14 a = 14;
15 }

Ao final desse código, qual é o valor da variável a?

a) 10

b) 11

c) 12

d) 13

e) 14

6 Considere o seguinte código.

www.facebook.com/k19treinamentos 219

CONTROLE DE FLUXO 220

1 int a = 1;
2 if(a >= 0 && a < 2) {
3 System.out.println("A");
4 }
5 if(a >= 2 && a < 6) {
6 System.out.println("B");
7 } else {
8 System.out.println("C");
9 }

Ao final da execução desse trecho de código, o que terá sido exibido?

a) “A”

b) “B”

c) “C”

d) “A” e “B”

e) “A” e “C”

7 Qual alternativa está correta?

a) if e else são instruções de repetição.

b) if e while são instruções de repetição.

c) else e while são instruções de repetição.

d) while e for são instruções de repetição.

e) if e for são instruções de repetição.

8 Qual alternativa está correta?

a) No while e for, a condição só pode ser um valor numérico.

b) No while e for, a condição pode ser um valor booleano ou numérico.

c) No while e for, a condição pode ser uma string ou um valor numérico.

d) No while e for, a condição pode ser qualquer coisa.

e) No while e for, a condição só pode ser um valor booleano.

9 Considere o seguinte código.

220 www.k19.com.br

221 CONTROLE DE FLUXO

1 int a = 1;
2
3 while(a > 10) {
4 a++;
5 }

Ao final desse código, qual é o valor da variável a?

a) 1

b) 2

c) 9

d) 10

e) 11

10 Considere o seguinte código.

1 int a = 1;
2
3 for(int i = 10; i > 0; i--) {
4 a += 2;
5 }

Ao final desse código, qual é o valor da variável a?

a) 1

b) 11

c) 12

d) 21

e) 23

11 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 for (;;) {
4 System.out.println("K19");
5 }
6 }
7 }

O que podemos afirmar sobre esse código?

a) Há um erro de compilação na linha 3.

www.facebook.com/k19treinamentos 221

CONTROLE DE FLUXO 222

b) Há um erro de execução na linha 3.

c) Ao executar a classe Programa, a mensagem “K19” será exibida exatamente uma vez.

d) Ao executar a classe Programa, a mensagem “K19” será exibida indefinidamente.

e) Todas as alternativas anteriores estão incorretas.

12 Considere o seguinte código.

1 int a = 0;
2
3 for(int i = 1; i <= 10; i++) {
4 if(i == 3 || i == 5) {
5 continue;
6 }
7
8 if(i == 9) {
9 break;
10 }
11
12 a += i;
13 }

Ao final desse código, qual é o valor da variável a?

a) 0

b) 3

c) 8

d) 28

e) 38

13 Considere o seguinte código.

1 int a = 0;
2 for(int i = 0; i < 10; i++) {
3 for(int j = 0; j < 10; j++) {
4 a++;
5 }
6 }

Ao final desse código, qual é o valor da variável a?

a) 9

b) 10

c) 18

d) 20

222 www.k19.com.br

223 CONTROLE DE FLUXO

e) 100

14 Considere o seguinte código.

1 int a = 0;
2 for(int i = 0; i < 10; i++) {
3 for(int j = 0; j < 10; j++) {
4 if(i == j) {
5 continue;
6 }
7 a++;
8 }
9 }

Ao final desse código, qual é o valor da variável a?

a) 18

b) 50

c) 90

d) 99

e) 100

15 Quando as chaves podem ser omitidas?

a) Nos blocos das instruções if, else, while, for e do que possuem exatamente duas instruções.

b) Nos blocos das instruções if, else, while, for e do que possuem exatamente uma instrução.

c) Apenas nos blocos das instruções if que possuem exatamente uma instrução.

d) Apenas nos blocos das instruções else que possuem exatamente duas instruções.

e) As chaves sempre podem ser omitidas.

16 Considere o código abaixo.

1 for(int i = 0; i < 10; i--) {
2 System.out.println(i);
3 }

Quantas vezes o bloco do laço for acima é executado?

a) 0

b) 9

www.facebook.com/k19treinamentos 223

CONTROLE DE FLUXO 224

c) 10

d) Indefinidamente.

e) Nenhuma das alternativas acima está correta.

17 Considere o seguinte código.

1 int a = 0;
2 int b = 1;
3 while(a < b) {
4 a++;
5 b++;
6 }

Quantas vezes o bloco do laço while acima é executado?

a) 0

b) 1

c) 2147483647

d) Indefinidamente.

e) Nenhuma das alternativas acima está correta.

18 Considere o seguinte código.

1 int a = 0;
2 int b = 1;
3 while(a > b || !(a > b)) {
4 a++;
5 b++;
6 }

Quantas vezes o bloco do laço while acima é executado?

a) 0

b) 1

c) 2147483648

d) Indefinidamente.

e) Nenhuma das alternativas acima está correta.

19 Considere o seguinte código.

224 www.k19.com.br

225 CONTROLE DE FLUXO

1 int a = 0;
2 int b = 0;
3 while(a <= 0 || b <= 0) {
4 a++;
5 b--;
6 }

Quantas vezes o bloco do laço while acima é executado?

a) 0

b) 1

c) 2147483647

d) Indefinidamente.

e) Nenhuma das alternativas acima está correta.

20 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 double valor = Math.random ();
4 if(valor < 0.5)
5 System.out.println(valor);
6 System.out.println("Você perdeu");
7 else
8 System.out.println(valor);
9 System.out.println("Você ganhou");
10 }
11 }

Qual das seguintes afirmações está correta?

a) Há um erro de compilação na linha 4.

b) Há um erro de compilação na linha 7.

c) Quando a classe Programa for executada, a mensagem “Você perdeu” será exibida.

d) Quando a classe Programa for executada, a mensagem “Você ganhou” será exibida.

e) Quando a classe Programa for executada, não podemos determinar a mensagem que será exi-
bida.

21 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 double valor = Math.random ();
4 if(valor < 0.5)
5 System.out.println("Você perdeu");
6 else(valor > 0.5)

www.facebook.com/k19treinamentos 225

CONTROLE DE FLUXO 226

7 System.out.println("Você ganhou");
8 }
9 }

Qual das seguintes afirmações está correta?

a) Há um erro de compilação na linha 4.

b) Há um erro de compilação na linha 6.

c) Quando a classe Programa for executada, a mensagem “Você perdeu” será exibida.

d) Quando a classe Programa for executada, a mensagem “Você ganhou” será exibida.

e) Não há erro de compilação ou de execução. Se o valor 0.5 for gerado pelo método random da
classe Math, nada será exibido.

22 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4
5 switch(a) {
6 case 1: System.out.println (1);
7 case 2: System.out.println (2);
8 case 3: System.out.println (3);
9 default: System.out.println (4);
10 }
11 }
12 }

Qual das afirmações abaixo está correta?

a) Ao executar a classe Programa, serão exibidos os números 1, 2, 3 e 4 na saída padrão.

b) Ao executar a classe Programa, será exibido o número 1 na saída padrão.

c) Há um erro de compilação na linha 9.

d) Há um erro de execução na linha 9.

e) Todas as alternativas anteriores estão incorretas.

23 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 double valor = Math.random ();
4 switch (valor) {
5 case 0.1:
6 System.out.println (1);
7 break;
8 case 0.2:
9 System.out.println (2);

226 www.k19.com.br

227 CONTROLE DE FLUXO

10 break;
11 default:
12 System.out.println (3);
13 }
14 }
15 }

Qual das afirmações abaixo está correta?

a) Há um erro de compilação na linha 11.

b) Há um erro de compilação na linha 4.

c) Há um erro de execução na linha 11.

d) Não há erro de compilação ou de execução. Ao executar a classe Programa, não podemos deter-
minar o que será exibido.

e) Não há erro de compilação ou de execução. Ao executar a classe Programa, o número 1 será
exibido.

24 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 1;
5 switch (a) {
6 case b:
7 System.out.println("OK");
8 break;
9 default:
10 System.out.println("ERRO");
11 }
12 }
13 }

Qual das afirmações abaixo está correta?

a) Há um erro de compilação na linha 5.

b) Há um erro de execução na linha 5.

c) Há um erro de compilação na linha 6.

d) Ao executar a classe Programa, a mensagem “OK” será exibida.

e) Ao executar a classe Programa, a mensagem “ERRO” será exibida.

25 Considere o código abaixo.

www.facebook.com/k19treinamentos 227

CONTROLE DE FLUXO 228

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4
5 do {
6 System.out.println("K19");
7 a--;
8 } while(a > 0);
9 }
10 }

Qual das afirmações abaixo está correta?

a) Há um erro de compilação na linha 8.

b) Ao executar a classe Programa, a mensagem “K19” será exibida exatamente uma vez.

c) Ao executar a classe Programa, a mensagem “K19” será exibida indefinidamente.

d) Ao executar a classe Programa, nada será exibido.

e) Há um erro de execução na linha 8.

26 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 final int contador = 0;
4
5 while(contador < 0) {
6 System.out.println("K19");
7 }
8 }
9 }

Qual das afirmações abaixo está correta?

a) Há um erro de compilação nesse código.

b) Há um erro de execução nesse código.

c) Ao executar a classe Programa, nada será exibido.

d) Ao executar a classe Programa, a mensagem “K19” será exibida.

e) Todas as alternativas anteriores estão incorretas.

27 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 double valor = Math.random ();
4 if(valor < 0.5) {
5 valor ++;

228 www.k19.com.br

229 CONTROLE DE FLUXO

6 continue;
7 }
8 else {
9 valor --;
10 break;
11 }
12 System.out.println(valor);
13 }
14 }

Qual das afirmações abaixo está correta?

a) Ao executar a classe Programa, um valor maior ou igual a 1 será exibido.

b) Ao executar a classe Programa, um valor menor ou igual a 1 será exibido.

c) Existem erros de compilação.

d) Ao executar a classe Programa, ocorrerá um erro de execução.

e) Nenhuma das alternativas anteriores está correta.

28 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 for(int a = 0, a < 10, a++) {
4 System.out.println(a);
5 }
6 }
7 }

Qual das afirmações abaixo está correta?

a) Ao executar a classe Programa, os números de 0 a 9 serão exibidos.

b) Ao executar a classe Programa, os números de 0 a 10 serão exibidos.

c) Há erro de compilação na linha 3.

d) Ao executar a classe Programa, o corpo do laço for será executado indefinidamente.

e) Nenhuma das alternativas anteriores está correta.

Minha Pontuação Pontuação Mínima: 22 Pontuação Máxima: 28

www.facebook.com/k19treinamentos 229

CONTROLE DE FLUXO 230

230 www.k19.com.br

ARRAY

C
A

P
Í

T
U

L
O

5
5.1 Introdução

Considere um programa de computador que realiza cálculos matemáticos com os preços dos
produtos de um supermercado. Por exemplo, esse programa calcula a média dos preços e encontra
o produto mais barato.

Para manipular os preços dos produtos, dentro de um programa, esses valores devem ser arma-
zenados em variáveis.

1 double preco1;
2 double preco2;
3 double preco3;
4 . . .

Como uma variável do tipo double armazena somente um valor de cada vez, seria necessário criar
uma variável para cada produto. Considerando que em um supermercado existem milhares de pro-
dutos, essa abordagem não é prática, pois seria necessário criar uma grande quantidade de variáveis.
Nesses casos, podemos utilizar arrays.

5.2 O que é um Array?

Um array é uma estrutura de dados capaz de armazenar uma coleção de variáveis. Todo array
possui uma capacidade. Essa capacidade é a quantidade de variáveis que o array armazena. As
variáveis contidas em um array não possuem nome. Para identificá-las, elas são numeradas de 0 até
a capaci d ade −1. Dessa forma, o índice da primeira variável é 0, o índice da segunda variável é 1,
o índice da terceira variável é 2 e assim sucessivamente. Como as variáveis dentro de um array são
organizadas de forma sequencial, é comum utilizar o termo posição para se referir a essas variáveis.
Por exemplo, utilizaremos “posição 10” ou invés de “variável 10”.

Basicamente, um array é como um armário com gavetas numeradas a partir do número 0.

www.facebook.com/k19treinamentos 231

ARRAY 232

0

1

2

3

Figura 5.1: Um armário com gavetas numeradas

Quando um array é criado, é necessário definir o tipo de valor que pode ser armazenado em cada
posição. Na analogia com armário, seria como se tivéssemos que definir o que pode ser guardado em
cada gaveta. Por exemplo, se definirmos que um armário deve guardar livros, então somente livros
podem ser armazenados nas gavetas desse armário. Não poderemos guardar revistas ou jornais.

0

1

2

3

LIVRO

REVISTA

Figura 5.2: Um armário de livros não pode guardar revistas

5.3 Referências

Em Java, os arrays são objetos. Para manipular (controlar) um objeto, é necessário possuir a
referência do mesmo. A referência de um array é como o controle remoto de uma TV. Através do
controle remoto, podemos controlar a TV. Através da referência, podemos controlar o array.

232 www.k19.com.br

233 ARRAY

1

2

3

4

5

6

7

8

9

-/--

0

CH

Figura 5.3: Controle remoto de uma TV

Importante

Os arrays não são armazenados em variáveis. Somente as referências dos arrays são
armazenadas em variáveis.

5.4 Declaração

Antes de criar um array, é necessário declarar uma variável para armazenar a referência desse
array. Nessa declaração, o tipo da variável é o tipo das variáveis contidas no array seguido dos carac-
teres “[” e “]” (colchetes).

1 int[] numeros;

Código Java 5.2: Declaração

Os colchetes também podem ser escritos à direita do nome da variável. Contudo, a forma mais
comum é utilizá-los à esquerda do nome da variável.

1 int numeros [];

Código Java 5.3: Colchetes à direita do nome da variável

Duas ou mais variáveis podem ser declaradas na mesma instrução. No exemplo abaixo, as variá-
veis numeros, codigos e matriculas são do tipo array de int. Os nomes das variáveis devem ser separados
por vírgula.

1 int[] numeros , codigos , matriculas;

Código Java 5.4: Declarando diversas variáveis na mesma instrução

Na declaração das variáveis que armazenam referências de arrays, não é permitido informar a
capacidade dos arrays.

1 int [10] numeros; // erro de compilação

Código Java 5.5: Informando a capacidade na declaração

www.facebook.com/k19treinamentos 233

ARRAY 234

5.5 Inicialização

Para criar um array, podemos utilizar o operador new. Na criação de um array, a capacidade deve
ser informada dentro dos colchetes. Essa capacidade pode ser um valor do tipo primitivo byte, short,
char ou int. Ela também pode ser um valor do tipo não primitivo Byte, Short, Character ou Integer.

No exemplo abaixo, o operador new cria um array com 10 posições para armazenar valores do tipo
int e devolve a referência do mesmo. Essa referência é armazenada na variável numeros.

1 int[] numeros; // declaração
2
3 numeros = new int [10]; // inicialização

Código Java 5.6: Inicialização

A declaração e a inicialização podem ser realizadas na mesma linha.

1 int[] numeros = new int [10]; // declaração e inicialização

Código Java 5.7: Declaração e inicialização na mesma linha

i n t [] n o m e D o A r r a y = n e w i n t [1 0] ;

TIPO DE DADO QUE SERÁ
ARMAZENADO PELO ARRAY

IDENTIFICADOR DA VARIÁVEL
INFORMA O TIPO DO

NOVO OBJETO

INFORMA QUE A VARIÁVEL
SERÁ UM ARRAY

INSTANCIA UM
NOVO OBJETO

INFORMA A QUANTIDADE
DE POSIÇÕES DO ARRAY

Figura 5.4: Declaração e inicialização de um array

Quando um array é criado, todas as posições são inicializadas com valores padrão. Se as variáveis
contidas no array forem de um tipo primitivo numérico, todas são inicializadas com o valor 0. Se elas
forem do tipo primitivo boolean, todas são inicializadas com o valor false. Se elas forem de um tipo
não primitivo, todas são inicializadas com o valor null.

1 int[] numeros = new int [10]; // as posições são inicializadas com 0
2
3 boolean [] aprovados = new boolean [10]; // as posições são inicializadas com false
4
5 String [] nomes = new String [10]; // as posições são inicializadas com null

Código Java 5.8: Valores padrão

Armadilha

No exemplo abaixo, um array com capacidade igual a −1 foi criado. De acordo
com as regras da linguagem Java, o código abaixo compila sem problemas. Contudo, o erro
NegativeArraySizeException é gerado durante a execução.

1 int[] numeros = new int[-1];

234 www.k19.com.br

235 ARRAY

5.6 Acessando o Conteúdo de um Array

Para acessar as posições de um array, é necessário indicar o índice da posição desejada dentro
de colchetes. No exemplo abaixo, a variável numeros guarda a referência de um array com 10 posições
para armazenar valores do tipo int. Essa variável foi utilizada para acessar a posição 5 (sexta posição)
do array.

1 int[] numeros = new int [10];
2
3 System.out.println(numeros [5]): // acessando a posição 5

Código Java 5.10: Acessando o conteúdo de um array

5.7 Alterando o Conteúdo de um Array

Para alterar o conteúdo das posições de um array, é necessário indicar o índice da posição dese-
jada dentro de colchetes. No exemplo abaixo, a variável numeros guarda a referência de um array com
10 posições para armazenar valores do tipo int. Essa variável foi utilizada para alterar o conteúdo da
posição 5 (sexta posição) do array.

1 int[] numeros = new int [10];
2
3 numeros [5] = 8;

Código Java 5.11: Alterando o conteúdo de um array

Simulação

Nessa simulação, mostraremos um exemplo de utilização de array.

1 Ao executar a linha 1, um array com três variáveis do tipo double é criado. Essas três variáveis são
inicializadas com o valor real 0.0.

1 double [] precos = new double [3];
2 precos [0] = 17.54;
3 precos [1] = 23.81;
4 System.out.println(precos [0]);
5 System.out.println(precos [1]);
6 System.out.println(precos [2]);

precos[0] = 0.0

precos[1] = 0.0

precos[2] = 0.0

2 Em seguida, a linha 2 é executada e o valor real 17.54 é armazenado na variável de índice 0 do
array criado na linha 1.

www.facebook.com/k19treinamentos 235

ARRAY 236

1 double [] precos = new double [3];
2 precos [0] = 17.54;
3 precos [1] = 23.81;
4 System.out.println(precos [0]);
5 System.out.println(precos [1]);
6 System.out.println(precos [2]);

precos[0] = 17.54

precos[1] = 0.0

precos[2] = 0.0

3 Na sequência, a linha 3 é executada e o valor real 23.81 é armazenado na variável de índice 1 do
array criado na linha 1.

1 double [] precos = new double [3];
2 precos [0] = 17.54;
3 precos [1] = 23.81;
4 System.out.println(precos [0]);
5 System.out.println(precos [1]);
6 System.out.println(precos [2]);

precos[0] = 17.54

precos[1] = 23.81

precos[2] = 0.0

4 Agora, a linha 4 será executada e o valor armazenado na variável de índice 0 do array criado na
linha 1 é exibido na saída padrão.

1 double [] precos = new double [3];
2 precos [0] = 17.54;
3 precos [1] = 23.81;
4 System.out.println(precos [0]);
5 System.out.println(precos [1]);
6 System.out.println(precos [2]);

precos[0] = 17.54

precos[1] = 23.81

precos[2] = 0.0

17.54

5 Continuando, a linha 5 será executada e o valor armazenado na variável de índice 1 do array
criado na linha 1 é exibido na saída padrão.

1 double [] precos = new double [3];
2 precos [0] = 17.54;
3 precos [1] = 23.81;
4 System.out.println(precos [0]);
5 System.out.println(precos [1]);
6 System.out.println(precos [2]);

precos[0] = 17.54

precos[1] = 23.81

precos[2] = 0.0

17.54
23.81

6 Por fim, a linha 6 será executada e o valor armazenado na variável de índice 2 do array criado na
linha 1 é exibido na saída padrão.

1 double [] precos = new double [3];
2 precos [0] = 17.54;
3 precos [1] = 23.81;
4 System.out.println(precos [0]);
5 System.out.println(precos [1]);
6 System.out.println(precos [2]);

precos[0] = 17.54

precos[1] = 23.81

precos[2] = 0.0

236 www.k19.com.br

237 ARRAY

17.54
23.81
0.0

5.8 Outras Formas de Inicialização

Na criação de um determinado array, é possível definir o seu conteúdo inicial. No exemplo
abaixo, um array para armazenar valores do tipo int foi criado com capacidade para três variáveis.
A primeira posição foi inicializada com o valor 1, a segunda, com o valor 2 e a terceira, com o va-
lor 3. A capacidade do array é a quantidade de elementos dentro das chaves. Nessa abordagem, a
capacidade não deve ser informada dentro dos colchetes.

1 int[] numeros = new int[]{1, 2, 3};

O mesmo array pode ser criado de uma forma mais simples. No exemplo abaixo, novamente, um
array para armazenar valores do tipo int foi criado com capacidade para três variáveis. A primeira
posição foi inicializada com o valor 1, a segunda, com o valor 2 e a terceira foi inicializada com o
valor 3.

1 int[] numeros = {1, 2, 3};

5.9 Percorrendo um Array

Ao utilizar um array, uma das tarefas mais comuns é acessar todas ou algumas posições desse
array de forma sistemática para realizar algum processamento sobre o conteúdo dessas posições.

Para percorrer um array, podemos utilizar qualquer instrução de repetição. Contudo, normal-
mente, a instrução de repetição for é a mais utilizada para essa tarefa. No exemplo abaixo, um array
com 100 posições para armazenar valores do tipo int foi criado. Todas as posições foram inicializa-
das com o valor padrão 0. A referência desse array foi armazenada na variável numeros. Em seguida,
no primeiro laço, os múltiplos de 2 a partir do 0 foram armazenados nesse array. No segundo laço,
os valores armazenados no array foram exibidos na saída padrão.

1 int[] numeros = new int [100];
2
3 for(int i = 0; i < 100; i++) {
4 numeros[i] = i * 2;
5 }
6
7 for(int i = 0; i < 100; i++) {
8 System.out.println(numeros[i]);
9 }

Código Java 5.20: Percorrendo um array para inserir e acessar valores

O atributo length

No exemplo anterior, a capacidade do array foi “inserida” diretamente no código fonte em três
pontos diferentes. Essa prática pode dificultar algumas mudanças na lógica do código. Em parti-
cular, para alterar a capacidade do array de 100 posições para 50 posições, três lugares devem ser

www.facebook.com/k19treinamentos 237

ARRAY 238

alterados. Basicamente, todos os lugares onde a capacidade do array foi “inserida” diretamente no
código teriam de ser alterados.

1 int[] numeros = new int[100];
2
3 for(int i = 0; i < 100; i++) {
4 numeros[i] = i * 2;
5 }
6
7 for(int i = 0; i < 100; i++) {
8 System.out.println(numeros[i]);
9 }

Código Java 5.21: Capacidade “hard-coded”

Para facilitar esse tipo de modificação, podemos utilizar o atributo length. Todo array possui
esse atributo e ele armazena a capacidade do array. No exemplo abaixo, o array foi criado com 100
posições. Nos laços, utilizamos o atributo length para recuperar a capacidade do array.

1 int[] numeros = new int [100];
2
3 for(int i = 0; i < numeros.length; i++) {
4 numeros[i] = i * 2;
5 }
6
7 for(int i = 0; i < numeros.length; i++) {
8 System.out.println(numeros[i]);
9 }

Código Java 5.22: Utilizando o atributo length

Agora, para alterar a capacidade do array de 100 posições para 50 posições, um único ponto do
código deve ser alterado.

O laço foreach

Como vimos, o for tradicional pode ser utilizado para percorrer as posições de um array.

1 for(int i = 0; i < numeros.length; i++) {
2 System.out.println(numeros[i]);
3 }

Código Java 5.23: Percorrendo um array com o for tradicional

Se o objetivo for somente percorrer as posições de um array sem modificar o seu conteúdo, po-
demos utilizar o laço foreach. O exemplo abaixo apresenta a sintaxe desse laço.

1 for(int numero : numeros) {
2 System.out.println(numero);
3 }

Código Java 5.24: Sintaxe do laço foreach

À direita do caractere “:”, é necessário indicar a variável que contém a referência do array que
desejamos percorrer. No exemplo acima, a variável numeros foi indicada. À esquerda do caractere “:”,
é necessário declarar uma variável compatível com o tipo das variáveis armazenadas no array. No

238 www.k19.com.br

239 ARRAY

exemplo acima, a variável numero do tipo int foi declarada. Na primeira iteração do laço, o valor arma-
zenado na primeira posição do array é copiado e guardado na variável numero. Na segunda iteração,
o valor da segunda posição do array é copiado e guardado na variável numero e assim sucessivamente
até a última posição do array.

5.10 Array Multidimensional

Até agora, utilizamos apenas arrays unidimensionais. Contudo, os arrays podem ser multidi-
mensionais, ou seja, podemos criar arrays com duas ou mais dimensões. Por exemplo, um array
bidimensional pode ser utilizado para representar uma tabela, uma matriz ou até um tabuleiro de
batalha naval.

Utilizando a analogia anterior, um array bidimensional é como um armário no qual é possível
armazenar em cada gaveta outro armário. Essa analogia pode ser expandida para arrays tridimensi-
onais, quadridimensionais e etc.

0

0

1

2

3

1

2

3

Figura 5.5: Abstração de um array multidimensional

Basicamente, os arrays multidimensionais são arrays de arrays.

Declaração

A declaração de um array multidimensional é semelhante à declaração de um array unidimensi-
onal. A quantidade de dimensões de um array é definida pela quantidade de pares de colchetes. No
exemplo abaixo, a variável numeros pode guardar a referência de um array bidimensional. Observe os
dois pares de colchetes.

1 int [][] numeros;

Código Java 5.25: Array bidimensional

www.facebook.com/k19treinamentos 239

ARRAY 240

Assim como nos arrays unidimensionais, os colchetes podem ser escritos à direita do nome da
variável.

1 int numeros [][];

Código Java 5.26: Array bidimensional

Também é possível mesclar as duas abordagens e definir pares de colchetes à esquerda e à direita
do nome da variável.

1 int[] numeros [];

Código Java 5.27: Array bidimensional

No exemplo abaixo, a variável x pode guardar a referência de um array bidimensional, a variável y
pode guardar a referência de um array tridimensional e a variável z pode guardar a referência de um
array quadridimensional. Novamente, o mais comum é escrever os colchetes à esquerda do nome
da variável.

1 int [][] x; // bidimensional
2
3 int [][] y[]; // tridimensional
4
5 int[] z[][][]; // quadrimensional

Código Java 5.28: Arrays multidimensionais

Duas ou mais variáveis podem ser declaradas na mesma instrução. No exemplo abaixo, a variá-
vel x pode armazenar a referência de um array bidimensional, a variável y a referência de um array
tridimensional e a variável z a referência de um array unidimensional.

1 int[] x[], y[][], z;

Código Java 5.29: Declarando diversas variáveis na mesma instrução

Na declaração das variáveis que armazenam referências de arrays, não é permitido informar a
capacidade dos arrays.

1 int [10][10] numeros; // erro de compilação

Código Java 5.30: Informando a capacidade na declaração

Inicialização

Na criação de um array multidimensional, pelo menos a capacidade da primeira dimensão pre-
cisa ser definida.

No exemplo abaixo, um array bidimensional foi criado. A primeira dimensão foi definida com
capacidade igual a 10 e a segunda dimensão com capacidade igual a 20. Nesse caso, foram criados
10 arrays com 20 posições cada um para armazenar valores do tipo int e um array com 10 posições
para armazenar as referências desses 10 arrays. Então, no total, 11 arrays foram criados, sendo 10
unidimensionais e 1 bidimensional. Dessa forma, temos espaço para armazenar 200 (isto é, 10×20)
valores do tipo int.

240 www.k19.com.br

241 ARRAY

1 int [][] numeros = new int [10][20];

Código Java 5.31: Inicializando todas as dimensões

No próximo exemplo, um array bidimensional foi criado. A primeira dimensão desse array foi
definida com capacidade igual a 30. A capacidade da segunda dimensão não foi definida. Nesse
caso, foi criado apenas 1 array com 30 posições para guardar referências de arrays que armazenam
valores do tipo int.

1 int [][] numeros = new int [30][];

Código Java 5.32: Inicializando apenas a primeira dimensão

O próximo código cria 1 array bidimensional e 3 unidimensionais. O array bidimensional tem
capacidade para guardar 30 referências de arrays unidimensionais que armazenam valores do tipo
int. O primeiro array unidimensional tem 10 posições, o segundo tem 20 posições e o terceiro tem
30 posições. As referências do primeiro, do segundo e do terceiro arrays unidimensionais foram
armazenadas respectivamente na primeira, na segunda e na terceira posição do array bidimensional.
As demais posições do array bidimensional continuam “vazias”, ou seja, com o valor null. Dessa
forma, temos espaço para armazenar 60 (ou seja, 10+20+30) valores do tipo int.

1 int [][] numeros = new int [30][];
2
3 numeros [0] = new int [10];
4 numeros [1] = new int [20];
5 numeros [2] = new int [30];

Código Java 5.33: Criando arrays unidimensionais separadamente

Outras formas de inicialização

No exemplo abaixo, foram criados 2 arrays unidimensionais e 1 bidimensional. O primeiro array
unidimensional armazena os valores 1, 2 e 3. O segundo array unidimensional armazena os valo-
res 4 e 5. O array bidimensional armazena as referências para o primeiro e para o segundo arrays
unidimensionais.

1 int [][] numeros = new int [][]{{1 , 2, 3}, {4, 5}};

Podemos criar os mesmos arrays do exemplo anterior da seguinte forma:

1 int [][] numeros = {{1, 2, 3}, {4, 5}};

Acesso

Para acessar uma posição em um array multidimensional, é necessário definir um índice para
cada dimensão. No exemplo abaixo, armazenamos o valor 1 na quarta posição (posição 3) do terceiro
(posição 2) array unidimensional.

1 int [][] numeros = new int [10][20];

www.facebook.com/k19treinamentos 241

ARRAY 242

2
3 numeros [2][3] = 1;

Código Java 5.36: Acessando as posições de um array multidimensional

Nesse outro exemplo, armazenamos o valor 1 na quarta posição (posição 3) do terceiro (posição
2) array unidimensional do segundo (posição 1) array bidimensional.

1 int [][][] numeros = new int [10][20][30];
2
3 numeros [1][2][3] = 1;

Código Java 5.37: Acessando as posições de um array multidimensional

O próximo exemplo armazena o valor 1 na quarta posição (posição 3) do terceiro (posição 2)
array unidimensional do segundo (posição 1) array bidimensional do primeiro (posição 0) array tri-
dimensional.

1 int [][][][] numeros = new int [10][20][30][40];
2
3 numeros [0][1][2][3] = 1;

Código Java 5.38: Acessando as posições de um array multidimensional

Percorrendo um array multidimensional

Para percorrer um array multidimensional, podemos utilizar laços encadeados. A quantidade de
laços encadeados é igual à quantidade de dimensões desse array. No exemplo abaixo, o primeiro for

percorre as 10 posições do array bidimensional. O segundo for percorre as 20 posições dos 10 arrays
unidimensionais.

1 int [][] numeros = new int [10][20];
2
3 for(int i = 0; i < numeros.length; i++) {
4 for(int j = 0; j < numeros[i]. length; j++) {
5 numeros[i][j] = i * j;
6 }
7 }

Código Java 5.39: Percorrendo um array multidimensional

No próximo exemplo, o primeiro for percorre as 10 posições do array tridimensional. O segundo
for percorre as 20 posições dos 10 arrays bidimensionais. O terceiro for percorre as 30 posições de
cada um dos 200 arrays unidimensionais.

1 int [][][] numeros = new int [10][20][30];
2
3 for(int i = 0; i < numeros.length; i++) {
4 for(int j = 0; j < numeros[i]. length; j++) {
5 for(int k = 0; k < numeros[i][j]. length; k++) {
6 numeros[i][j][k] = i * j * k;
7 }
8 }
9 }

Código Java 5.40: Percorrendo um array multidimensional

242 www.k19.com.br

243 ARRAY

Simulação

Nessa simulação, mostraremos um exemplo de utilização de array multidimensional.

1 Ao executar a linha 1, um array multidimensional 2 por 2 do tipo int é criado. Todas as posições
desse array são inicializadas com valor padrão do tipo int, ou seja, todas as posições são inicializadas
com o valor 0.

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 0

x[0][1] = 0

x[1][0] = 0

x[1][1] = 0

2 Em seguida, a linha 2 é executada e o valor inteiro 1 é armazenado na variável de índice [0][0] do
array criado na linha 1.

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 1

x[0][1] = 0

x[1][0] = 0

x[1][1] = 0

3 Na sequência, a linha 3 é executada e o valor inteiro 2 é armazenado na variável de índice [0][1]
do array criado na linha 1.

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 1

x[0][1] = 2

x[1][0] = 0

x[1][1] = 0

4 Agora, a linha 4 é executada e o valor inteiro 3 é armazenado na variável de índice [1][0] do array
criado na linha 1.

www.facebook.com/k19treinamentos 243

ARRAY 244

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 1

x[0][1] = 2

x[1][0] = 3

x[1][1] = 0

5 Continuando, a linha 5 é executada e o valor inteiro 4 é armazenado na variável de índice [1][1]
do array criado na linha 1.

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 1

x[0][1] = 2

x[1][0] = 3

x[1][1] = 4

6 Em seguida, a linha 6 será executada e o valor armazenado na variável de índice [0][0] do array
criado na linha 1 é exibido na saída padrão.

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 1

x[0][1] = 2

x[1][0] = 3

x[1][1] = 4

1

7 Na sequência, a linha 7 será executada e o valor armazenado na variável de índice [0][1] do array
criado na linha 1 é exibido na saída padrão.

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 1

x[0][1] = 2

x[1][0] = 3

x[1][1] = 4

1
2

244 www.k19.com.br

245 ARRAY

8 Na sequência, a linha 8 será executada e o valor armazenado na variável de índice [1][0] do array
criado na linha 1 é exibido na saída padrão.

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 1

x[0][1] = 2

x[1][0] = 3

x[1][1] = 4

1
2
3

9 Por fim, a linha 9 será executada e o valor armazenado na variável de índice [1][1] do array criado
na linha 1 é exibido na saída padrão.

1 int [][] x = new int [2][2];
2 x[0][0] = 1;
3 x[0][1] = 2;
4 x[1][0] = 3;
5 x[1][1] = 4;
6 System.out.println(x[0][0]);
7 System.out.println(x[0][1]);
8 System.out.println(x[1][0]);
9 System.out.println(x[1][1]);

x[0][0] = 1

x[0][1] = 2

x[1][0] = 3

x[1][1] = 4

1
2
3
4

5.11 Exercícios de Fixação

1 Abra um terminal, entre na pasta dos seus exercícios e crie uma pasta chamada arrays para os
arquivos desenvolvidos nesse capítulo.

2 Na pasta arrays, crie um arquivo chamado SequenciaQualquer.java. Implemente um programa
em Java que armazene 10 números inteiros em um array. Todas as posições do array devem ser
preenchidas e o valor armazenado fica à sua escolha. Após preencher o array, exiba os seus valores
no terminal.

3 Compile o arquivo SequenciaQualquer.java e execute o programa.

4 Na pasta arrays, crie um arquivo chamado SequenciaCrescente.java. Implemente um programa
em Java que armazene 10 números inteiros em um array. Preencha todas as posições do array com
valores sequenciais. Ao final, exiba no terminal esses valores.

5 Compile o arquivo SequenciaCrescente.java e execute o programa.

www.facebook.com/k19treinamentos 245

ARRAY 246

6 Na pasta arrays, crie um arquivo chamado SequenciaDecrescente.java. Implemente um programa
em Java que armazene 10 números inteiros em um array. Preencha todas as posições do array com
valores sequenciais decrescentes. Ao final, exiba no terminal esses valores.

7 Compile o arquivo SequenciaDecrescente.java e execute o programa.

8 Na pasta arrays, crie um arquivo chamado SequenciaImpar.java. Implemente um programa em
Java que armazene 10 números inteiros ímpares em um array. Ao final, exiba no terminal esses valo-
res.

9 Compile o arquivo SequenciaImpar.java e execute o programa.

10 Na pasta arrays, crie um arquivo chamado SequenciaAleatoria.java. Implemente um programa
em Java que armazene 10 números inteiros aleatórios em um array. Ao final, exiba no terminal esses
valores.

11 Compile o arquivo SequenciaAleatoria.java e execute o programa.

12 Na pasta arrays, crie um arquivo chamado TabelaQualquer.java. Implemente um programa em
Java que armazene números inteiros em um array de arrays. Ao final, exiba no terminal esse valores.

13 Compile o arquivo TabelaQualquer.java e execute o programa.

14 Na pasta arrays, crie um arquivo chamado TabelaAleatoria.java. Implemente um programa em
Java que armazene números inteiros aleatórios em um array de arrays. Ao final, exiba no terminal
esse valores.

15 Compile o arquivo TabelaAleatoria.java e execute o programa.

16 Na pasta arrays, crie um arquivo chamado Tabuada.java. Implemente um programa em Java que
armazene os valores da tabuada dos números de 1 a 10 em um array de arrays. Ao final, exiba no
terminal a tabuada de acordo com o exemplo abaixo.

1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
. . .
1 x 10 = 10
2 x 1 = 1
2 x 2 = 4
. . .
10 x 8 = 80
10 x 9 = 90
10 x 10 = 100

Terminal 5.8: Exemplo de saída

246 www.k19.com.br

247 ARRAY

17 Compile o arquivo Tabuada.java e execute o programa.

5.12 Erro: Utilizar valores incompatíveis como índices de um array

Um erro de compilação ocorre quando usamos como índice de um array um valor de tipo incom-
patível com int.

1 class Programa {
2 public static void main(String [] args) {
3 double i = 1;
4 double [] numeros = new double [5];
5 System.out.println(numeros[i]);
6 }
7 }

Código Java 5.50: Programa.java

No código acima, ocorre um erro de compilação na linha 5, pois um valor de tipo double foi utili-
zado como índice do array.

Programa.java :5: error: incompatible types: possible lossy conversion from double to int
System.out.println(numeros[i]);

^
1 error

Terminal 5.9: Erro de compilação

5.13 Erro: Não definir a primeira dimensão de um array em sua
inicialização

Um erro de compilação ocorre quando não definimos a primeira dimensão de um array em sua
inicialização.

1 class Programa {
2 public static void main(String [] args) {
3 int [][] a = new int [][5];
4 }
5 }

Código Java 5.51: Programa.java

No código acima, declaramos um array de duas dimensões. Em sua inicialização, na linha 3, não
definimos a primeira dimensão do array e isso provoca um erro de compilação.

Programa.java :3: error: ’]’ expected
int [][] a = new int [][5];

^
Programa.java :3: error: ’;’ expected

int [][] a = new int [][5];
^

2 errors

Terminal 5.10: Erro de compilação

www.facebook.com/k19treinamentos 247

ARRAY 248

5.14 Erro: Acessar uma posição inválida de um array

Ocorre um erro de execução quando tentamos acessar uma posição inválida de um array.

1 class Programa {
2 public static void main(String [] args) {
3 int[] a = new int [5];
4 System.out.println(a[5]);
5 }
6 }

Código Java 5.52: Programa.java

No código acima, tentamos acessar a posição de número 5 do array a. Apesar do array possuir 5
posições, elas devem ser acessadas com índices que variam de 0 a 4.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5
at Programa.main(Programa.java :4)

Terminal 5.11: Erro de execução

5.15 Exercícios Complementares

1 Considere um programa de computador que corrige provas de múltipla escolha. Esse programa
deve armazenar o gabarito de uma prova em um array. Implemente um programa em Java que gere
aleatoriamente o gabarito de uma prova com 10 questões de múltipla escolha. Suponha que cada
questão possua três alternativas numeradas de 1 a 3. Na pasta arrays, crie um arquivo chamado
GeradorDeGabarito.java. Complete o código a seguir.

1 class GeradorDeGabarito {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 5.53: GeradorDeGabarito.java

2 Considere um programa que corrige provas de múltipla escolha. Esse programa deve armazenar
as respostas dos alunos em uma tabela. Na primeira linha dessa tabela, devem ser armazenadas
as respostas do primeiro aluno. Na segunda linha, as notas do segundo aluno. E assim por diante.
Implemente um programa que preencha uma tabela com respostas aleatórias. Para implementar
esse programa, suponha que a prova tenha 10 questões de múltipla escolha. Cada questão possui 3
alternativas numeradas de 1 a 3. Além disso, suponha que 5 alunos tenham realizado essa prova. Na
pasta arrays, crie um arquivo chamado GeradorDeRespostasAleatorias.java.

1 class GeradorDeRespostasAleatorias {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 5.54: GeradorDeRespostasAleatorias.java

248 www.k19.com.br

249 ARRAY

3 Considere um programa de computador que corrige provas de múltipla escolha. Esse programa
deve armazenar o gabarito da prova em um array. As respostas dos alunos devem ser armazenadas
em uma tabela (um array de arrays). Na primeira linha dessa tabela, devem ser armazenadas as
respostas do primeiro aluno. Na segunda linha, as notas do segundo aluno. E assim por diante. O
programa deve exibir a quantidade de acertos de cada aluno. Implemente um programa em Java para
realizar a correção dessas provas. Na pasta arrays, crie um arquivo chamado CorretorDeProva.java.
Complete o código a seguir.

1 class CorretorDeProva {
2 public static void main(String [] args) {
3 int numeroDeQuestoes = 10;
4 int numeroDeAlunos = 5;
5 int[] gabarito = new int[numeroDeQuestoes];
6
7 for(int i = 0; i < gabarito.length; i++) {
8 gabarito[i] = (int)(Math.random () * 3 + 1);
9 System.out.print(gabarito[i] + " ");
10 }
11 System.out.println("gabarito");
12
13 int [][] respostas = new int[numeroDeAlunos][numeroDeQuestoes];
14
15 for(int i = 0; i < respostas.length; i++) {
16 for(int j = 0; j < respostas[i]. length; j++) {
17 respostas[i][j] = (int)(Math.random () * 3 + 1);
18 System.out.print(respostas[i][j] + " ");
19 }
20 System.out.println("aluno " + (i + 1));
21 }
22
23
24 }
25 }

Código Java 5.55: CorretorDeProva.java

4 Considere um programa de computador que controla as vagas de um estacionamento. Esse
programa deve armazenar em uma tabela (array de arrays) a situação das vagas (ocupada ou livre)
por andar. Implemente um programa em Java que defina aleatoriamente a situação das vagas de um
estacionamento de quatro andares numerados de 1 a 4. Suponha que a capacidade de cada andar
seja de 10 vagas. Na pasta arrays, crie um arquivo chamado ControleDeVagas.java. Complete o código
a seguir.

1 class ControleDeVagas {
2 public static void main(String [] args) {
3
4 }
5 }

Código Java 5.56: ControleDeVagas.java

5 Considere um programa de computador que controla as vagas de um estacionamento. Esse
programa deve armazenar em uma tabela (array de arrays) a situação das vagas (ocupada ou livre).
Implemente um programa em Java que exiba no terminal a quantidade de vagas livres por andar. Na
pasta arrays, crie um arquivo chamado Estacionamento.java. Complete o código a seguir.

1 class Estacionamento {
2 public static void main(String [] args) {

www.facebook.com/k19treinamentos 249

ARRAY 250

3 int numeroDeAndares = 4;
4 int numeroDeVagasPorAndar = 10;
5 boolean [][] vagas = new boolean[numeroDeAndares][numeroDeVagasPorAndar];
6 for(int i = 0; i < vagas.length; i++) {
7 for(int j = 0; j < vagas[i]. length; j++) {
8 vagas[i][j] = Math.random () < 0.5;
9 System.out.print(vagas[i][j] ? "- " : "X ");
10 }
11 System.out.println("andar " + (i + 1));
12 }
13
14
15 }
16 }

Código Java 5.57: Estacionamento.java

5.16 Resumo

1 Os arrays são estruturas de dados simples que permitem o armazenamento sequencial de da-
dos.

2 As posições de um array são numeradas sequencialmente iniciando com 0.

3 A capacidade de um array pode ser obtida através do atributo length.

4 Na tentativa de acesso a uma posição inexistente de um array, um erro de execução é gerado.

5.17 Prova

1 Qual alternativa está correta?

a) As posições de um array são numeradas iniciando com o número 0.

b) As posições de um array são numeradas iniciando com o número 1.

c) Um array pode ter no máximo 100 posições.

d) Os arrays armazenam apenas números inteiros.

e) As posições de um array são acessadas com chaves.

2 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 int[] array = new int [10];

250 www.k19.com.br

251 ARRAY

4 array [10] = 10;
5 System.out.println(array [10]);
6 }
7 }

Qual alternativa está correta?

a) Nesse código, há um erro de compilação.

b) Nesse código, há um erro de execução.

c) Não há nada de errado nesse código.

d) O valor 10 será exibido no terminal.

e) O valor 0 será exibido no terminal.

3 Como a capacidade de um array é recuperada?

a) Através da propriedade Length.

b) Através da propriedade Size.

c) Através do atributo capacity.

d) Através do atributo size.

e) Através do atributo length.

4 Considere uma variável chamada a que armazena uma referência de um array. Qual é a forma
correta de acessar a quinta posição desse array?

a) a[5]

b) a{5}

c) a(5)

d) a[4]

e) a{4}

5 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 int[] array = new int [10];
4
5 for(int i = 0; i < 100; i++) {
6 array[i] = i;
7 }
8 }
9 }

www.facebook.com/k19treinamentos 251

ARRAY 252

Qual alternativa está correta?

a) Na compilação, ocorrerá um erro.

b) Na execução, as 100 posições do array serão preenchidas.

c) Na compilação, as 100 posições do array serão preenchidas.

d) Na execução, todos os valores armazenados no array serão exibidos no terminal.

e) Na execução, ocorrerá um erro.

6 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 double d = 1;
4 double [] v = new double [10];
5 v[d] = d;
6 System.out.println(v[d]);
7 }
8 }

Qual afirmação está correta?

a) Ao executar a classe Programa, será exibido “1” na saída padrão.

b) Ocorre erro de execução na linha 5.

c) Existem erros de compilação nas linhas 5 e 6.

d) Ao executar a classe Programa, será exibido “1.0” na saída padrão.

e) Nenhuma das alternativas anteriores está correta.

7 Considere as seguintes inicializações de arrays.

1 int [][][] a = new int [2][2][2];
2 int [][] b = new int [2][];
3 int [][] c = new int [][4];
4 int[] d = new int [10];
5 int[] e = new int [2]{1 ,2};

Quais inicializações estão corretas?

a) Apenas as das linhas 1, 2 e 4.

b) Apenas as das linhas 1 e 4.

c) Apenas as das linhas 1, 4 e 5.

d) Apenas as das linhas 4 e 5.

252 www.k19.com.br

253 ARRAY

e) Todas.

8 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 int[] numeros = new int [10];
4 int a = 30 - 40;
5 System.out.println(numeros[a]);
6 }
7 }

Qual das afirmações a seguir está correta?

a) Ao executar a classe Programa, será exibido “0” na saída padrão.

b) Ao executar a classe Programa, nada será exibido na saída padrão.

c) Há erro de compilação na linha 5.

d) Há erro de execução na linha 5.

e) Ao executar a classe Programa, será exibido “-10” na saída padrão.

Minha Pontuação Pontuação Mínima: 6 Pontuação Máxima: 8

www.facebook.com/k19treinamentos 253

ARRAY 254

254 www.k19.com.br

MÉTODOS

C
A

P
Í

T
U

L
O

6
6.1 Introdução

Considere o sistema de uma empresa que precisa gerar diversos tipos de documentos como reci-
bos, atestados e relatórios. Os dados da empresa devem aparecer no cabeçalho desses documentos.

1 System.out.println("------------ K19 Treinamentos ------------");
2 System.out.println("----------- contato@k19.com.br -----------");

Código Java 6.1: Cabeçalho

As duas linhas de código acima exibem o cabeçalho dos documentos. Toda vez que um docu-
mento é gerado, esse trecho de código deve ser executado. A primeira abordagem para resolver esse
problema é replicar essas duas linhas toda vez que for necessário. Contudo, essa replicação tornará
a manutenção do sistema mais complicada.

Por exemplo, suponha que o sistema já esteja funcionando e o trecho de código que exibe o ca-
beçalho dos documentos tenha sido replicado muitas vezes. Agora, considere uma mudança simples
no cabeçalho dos documentos. O telefone da empresa deve aparecer depois do email. Para atender
a essa nova regra, será necessário modificar o código fonte em vários lugares.

De forma geral, toda vez que houver uma alteração no cabeçalho, será necessário modificar mui-
tos lugares do código fonte. Consequentemente, a manutenção do sistema será mais demorada.
Para facilitar eventuais mudanças no cabeçalho, podemos utilizar o conceito de método. Um mé-
todo permite que um determinado trecho de código possa ser reutilizado várias vezes.

6.2 Estrutura Geral de um Método

Então, definiremos um método para exibir o cabeçalho dos documentos na saída padrão e rea-
proveitá-lo sempre que for necessário. Observe a declaração do método exibeCabecalho no exemplo
abaixo.

1 static void exibeCabecalho () {
2 System.out.println("------------ K19 Treinamentos ------------");
3 System.out.println("----------- contato@k19.com.br -----------");
4 }

A palavra chave static permite que o método exibeCabecalho possa ser utilizado sem a criação

www.facebook.com/k19treinamentos 255

MÉTODOS 256

de um objeto. O conceito de objeto não faz parte do conteúdo deste livro. Portanto, utilizaremos o
modificador static na declaração de todos os métodos desse material.

A palavra chave void indica que o método exibeCabecalho não devolverá nenhuma resposta depois
de ser executado.

À direita da palavra chave void, definimos o nome do método. Em nosso caso, o nome do método
é exibeCabecalho. Os nomes dos métodos são utilizados para chamá-los posteriormente.

Depois do nome do método, os parâmetros são definidos dentro de parênteses. Como o método
exibeCabecalho não precisa de parâmetros, nada foi definido dentro dos parênteses.

Por fim, à direita dos parâmetros, foi definido o corpo do método exibeCabecalho. No corpo de um
método, colocamos as instruções que devem ser executadas quando esse método for chamado.

Observe, no código abaixo, o método exibeCabecalho sendo chamado duas vezes.

1 class Programa {
2 public static void main(String [] args) {
3 // chamando o método exibeCabecalho
4 exibeCabecalho ();
5 System.out.println("Recibo: R$ 545,00");
6
7 System.out.println ();
8
9 // chamando método exibeCabecalho
10 exibeCabecalho ();
11 System.out.println("Atestado de Matrícula: Jonas Keizo Hirata");
12 }
13
14 static void exibeCabecalho () {
15 System.out.println("------------ K19 Treinamentos ------------");
16 System.out.println("----------- contato@k19.com.br -----------");
17 }
18 }

K19$ java Programa
------------ K19 Treinamentos ------------
----------- contato@k19.com.br -----------
Recibo: R$ 545,00

------------ K19 Treinamentos ------------
----------- contato@k19.com.br -----------
Atestado de Matrícula: Jonas Keizo Hirata

Agora, acrescentar o telefone da empresa no cabeçalho dos documentos é muito fácil. Basta
alterar o código do método exibeCabecalho.

1 static void exibeCabecalho () {
2 System.out.println("------------ K19 Treinamentos ------------");
3 System.out.println("----------- contato@k19.com.br -----------");
4 System.out.println("-------------- 11 2387 -3791 --------------");
5 }

6.3 Parâmetros

Considere um programa de computador que realiza operações financeiras como o cálculo de
juros simples por exemplo. Para evitar repetição de código, podemos definir um método para realizar

256 www.k19.com.br

257 MÉTODOS

esse cálculo e reutilizá-lo toda vez que for necessário.

www.facebook.com/k19treinamentos 257

MÉTODOS 258

1 static void calculaJuroSimples () {
2 double juro = 10000 * 0.015 * 12;
3 }

Observe que o método acima considera um capital fixo de R$ 10.000,00, uma taxa de juro fixa de
1,5% e um período fixo de 12 meses. De fato, esse método não é muito útil porque toda vez que ele
for chamado, ele realizará o cálculo com esses valores fixos.

Para tornar o método calculaJuroSimples mais útil, devemos parametrizá-lo. Basicamente, os pa-
râmetros de um método são variáveis que permitem que valores diferentes sejam passados a cada
chamada desse método.

1 static void calculaJuroSimples(double capital , double taxa , int periodo) {
2 double juro = capital * taxa * periodo;
3 }

No código acima, três parâmetros foram definidos para o método calculaJuroSimples: capital, taxa
e periodo. O primeiro parâmetro é do tipo double, o segundo também é do tipo double e o terceiro é do
tipo int.

Agora, nas chamadas do método calculaJuroSimples, devemos passar os três valores necessários
para o cálculo do juro simples. No exemplo a seguir, o método main chama o método calculaJuroSimples

duas vezes. Na primeira chamada, os valores passados como parâmetros são 10000, 0.015 e 12. Na
segunda chamada, os valores passados como parâmetros são 25400, 0.02 e 30.

1 class Programa {
2 public static void main(String [] args) {
3 calculaJuroSimples (10000 , 0.015, 12);
4
5 calculaJuroSimples (25400 , 0.02, 30);
6 }
7
8 static void calculaJuroSimples(double capital , double taxa , int periodo) {
9 double juro = capital * taxa * periodo;
10 }
11 }

6.4 Resposta

O valor calculado dentro do método calculaJuroSimples é armazenado em uma variável local. Essa
variável não pode ser acessada dentro do método main. Em outras palavras, o método main não tem
acesso ao valor do juro que foi calculado dentro do método calculaJuroSimples.

Todo método pode, ao final do seu processamento, devolver uma resposta para quem o chamou.
O comando return indica o valor de resposta de um método.

1 static double calculaJuroSimples(double capital , double taxa , int periodo) {
2 double juro = capital * taxa * periodo;
3 return juro;
4 }

Observe as duas modificações realizadas no método calculaJuroSimples. A primeira alteração é a
retirada da palavra reservada void e a inserção da palavra reservada double em seu lugar. A palavra

258 www.k19.com.br

259 MÉTODOS

void indicava que o método não devolvia nenhuma resposta ao final do seu processamento. A pala-
vra double indica que o método devolverá um valor do tipo double ao final do seu processamento. A
segunda modificação é a utilização do comando return para devolver como resposta o juro calculado,
que é um valor do tipo double.

Agora, a resposta pode ser recuperada no método main e armazenada em uma variável por exem-
plo.

1 class Programa {
2 public static void main(String [] args) {
3 double resposta1 = calculaJuroSimples (10000 , 0.015, 12);
4
5 double resposta2 = calculaJuroSimples (25400 , 0.02, 30);
6
7 System.out.println("Juro: " + resposta1);
8 System.out.println("Juro: " + resposta2);
9 }
10
11 static double calculaJuroSimples(double capital , double taxa , int periodo) {
12 double juro = capital * taxa * periodo;
13 return juro;
14 }
15 }

Um método pode devolver outros tipos de valores. Para isso, basta modificar a marcação de
retorno definindo o tipo de valor que o método devolverá. Veja alguns exemplos.

1 static int metodo () {
2 // corpo de um método que devolve int
3 }

1 static char metodo () {
2 // corpo de um método que devolve char
3 }

1 static float metodo () {
2 // corpo de um método que devolve float
3 }

Simulação

Nessa simulação, mostraremos um exemplo de chamada de método.

1 Na execução da linha 3, uma variável do tipo int chamada a é declarada e inicializada com o
valor 1. Essa variável é uma variável local do método main.

www.facebook.com/k19treinamentos 259

MÉTODOS 260

1 class Metodos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = soma(a, b);
6 System.out.println(c);
7 }
8 static int soma(int a, int b) {
9 int c = a + b;
10 return c;
11 }
12 }

amain = 1

2 Na sequência, a linha 4 é executada e uma variável do tipo int chamada b é declarada e iniciali-
zada com o valor 2. Essa variável é uma variável local do método main.

1 class Metodos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = soma(a, b);
6 System.out.println(c);
7 }
8 static int soma(int a, int b) {
9 int c = a + b;
10 return c;
11 }
12 }

amain = 1

bmain = 2

3 Em seguida, na linha 5, o método soma é chamado. Os valores armazenados nas variáveis a e b do
método main são passados como argumentos nessa chamada de método.

1 class Metodos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = soma(a, b);
6 System.out.println(c);
7 }
8 static int soma(int a, int b) {
9 int c = a + b;
10 return c;
11 }
12 }

amain = 1

bmain = 2

4 Agora, as variáveis a e b do método soma recebem os valores passados como argumentos no passo
anterior. Essas variáveis são variáveis locais do método soma.

260 www.k19.com.br

261 MÉTODOS

1 class Metodos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = soma(a, b);
6 System.out.println(c);
7 }
8 static int soma(int a, int b) {
9 int c = a + b;
10 return c;
11 }
12 }

amain = 1

bmain = 2

asoma = 1

bsoma = 2

5 Na sequência, ao executar a linha 9, a soma dos valores armazenados nas variáveis a e b do
método soma é armazenada na variável c. Essa variável c é uma variável local do método soma

1 class Metodos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = soma(a, b);
6 System.out.println(c);
7 }
8 static int soma(int a, int b) {
9 int c = a + b;
10 return c;
11 }
12 }

amain = 1

bmain = 2

asoma = 1

bsoma = 2

csoma = 3

6 Em seguida, ao executar a linha 10, o valor armazenado na variável c do método soma é devolvido
como resposta para o método main.

1 class Metodos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = soma(a, b);
6 System.out.println(c);
7 }
8 static int soma(int a, int b) {
9 int c = a + b;
10 return c;
11 }
12 }

amain = 1

bmain = 2

asoma = 1

bsoma = 2

csoma = 3

7 Agora, o fluxo de execução volta para o método main. Na linha 5, a variável c desse método recebe
a resposta da chamada do método soma.

www.facebook.com/k19treinamentos 261

MÉTODOS 262

1 class Metodos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = soma(a, b);
6 System.out.println(c);
7 }
8 static int soma(int a, int b) {
9 int c = a + b;
10 return c;
11 }
12 }

amain = 1

bmain = 2

cmain = 3

8 Por fim, na execução da linha 6, o valor da variável c do método main é exibido na saída padrão.

1 class Metodos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = soma(a, b);
6 System.out.println(c);
7 }
8 static int soma(int a, int b) {
9 int c = a + b;
10 return c;
11 }
12 }

amain = 1

bmain = 2

cmain = 3

3

6.5 Exercícios de Fixação

1 Abra um terminal, entre na pasta dos seus exercícios e crie uma pasta chamada metodos para os
arquivos desenvolvidos neste capítulo.

2 Na pasta metodos, crie um arquivo chamado ConsumoDeCombustivel.java. Implemente um método
que receba a distância percorrida por um veículo em quilômetros e a quantidade de combustível
em litros utilizada nesse deslocamento como argumentos. Esse método deve calcular e devolver a
distância média em quilômetro percorrida com o consumo de um litro de combustível.

1 class ConsumoDeCombustivel {
2 public static void main(String [] args) {
3 double reposta1 = calculaConsumo (131.679 , 13.5);
4 double reposta2 = calculaConsumo (251.856 , 21.6);
5
6 System.out.println("Consumo: " + reposta1);
7 System.out.println("Consumo: " + reposta2);
8 }
9
10
11 }

Código Java 6.21: ConsumoDeCombustivel.java

262 www.k19.com.br

263 MÉTODOS

3 Compile o arquivo ConsumoDeCombustivel.java e execute o programa.

4 Na pasta metodos, crie um arquivo chamado JuroComposto.java. Implemente um método que re-
ceba um capital, uma taxa e um período como argumentos. Esse método deve calcular o montante
correspondente ao cálculo de juro composto com os argumentos. Dica: a fórmula para o juro com-
posto é mont ante = capi t al × (1+ t axa)per i odo .

1 class JuroComposto {
2 public static void main(String [] args) {
3 double reposta1 = calculaJuroComposto (10000 , 0.1, 6);
4 double reposta2 = calculaJuroComposto (20000 , 0.05, 6);
5
6 System.out.println("Montante: " + reposta1);
7 System.out.println("Montante: " + reposta2);
8 }
9
10
11 }

Código Java 6.22: JuroComposto.java

5 Compile o arquivo JuroComposto.java e execute o programa.

6 Na pasta metodos, crie um arquivo chamado IRPF.java. Implemente um método que receba o
valor do salário de uma pessoa física como argumento. Esse método deve calcular o imposto retido
na fonte correspondente ao valor desse salário. Utilize os valores da Tabela 6.1 para implementar
esse cálculo.

Salário Alíquota Dedução
Até R$ 1.787,77 0% R$ 0,00
De R$ 1.787,77 até R$ 2.679,29 7,5% R$ 134,08
De R$ 2.679,29 até R$ 3.572,43 15% R$ 335,03
De R$ 3.572,43 até R$ 4.463,81 22,5% R$ 602,96
Acima de R$ 4.463,81 27,5% R$ 826,15

Tabela 6.1: Tabela do IRPF 2014

De acordo com a Tabela 6.1, o imposto retido na fonte de uma pessoa que recebe R$ 4.000,00 é
igual a 4000×0.225−602.96.

1 class IRPF {
2 public static void main(String [] args) {
3 double reposta1 = calculaIRPF (1350.57);
4 double reposta2 = calculaIRPF (2150.37);
5 double reposta3 = calculaIRPF (3378.98);
6 double reposta4 = calculaIRPF (3956.12);
7 double reposta5 = calculaIRPF (6200.15);
8
9 System.out.println("IRPF 1: " + reposta1);
10 System.out.println("IRPF 2: " + reposta2);
11 System.out.println("IRPF 3: " + reposta3);
12 System.out.println("IRPF 4: " + reposta4);
13 System.out.println("IRPF 5: " + reposta5);
14 }
15

www.facebook.com/k19treinamentos 263

MÉTODOS 264

16
17 }

Código Java 6.23: IRPF.java

7 Compile o arquivo IRPF.java e execute o programa.

8 Na pasta metodos, crie um arquivo chamado IMC.java. Implemente um método que realize o
cálculo do índice de massa corporal (IMC). Esse método deve receber como argumentos o peso em
quilogramas e a altura em metros de uma pessoa. Ele deve calcular o índice de massa corporal com
esses argumentos e por fim devolver o valor calculado. Implemente também um método que receba
como argumento o IMC de uma pessoa e devolva a situação dela de acordo com a Tabela 6.2.

IMC Situação
Até 17 Muito abaixo do peso
De 17 até 18.5 Abaixo do peso
De 18.5 até 25 Peso normal
De 25 até 30 Acima do peso
De 30 até 35 Obesidade I
De 35 até 40 Obesidade II - severa
Acima de 40 Obesidade III - mórbida

Tabela 6.2: Tabela do IMC

1 class IMC {
2 public static void main(String [] args) {
3 double amandaIMC = calculaIMC (52.6, 1.61);
4 double joyceIMC = calculaIMC (54.1, 1.59);
5
6 String amandaSituacao = calculaResultadoIMC(amandaIMC);
7 String joyceSituacao = calculaResultadoIMC(joyceIMC);
8
9 System.out.println("Amanda IMC: " + amandaIMC + " - " + amandaSituacao);
10 System.out.println("Joyce IMC: " + joyceIMC + " - " + joyceSituacao);
11 }
12
13
14
15
16 }

Código Java 6.24: IMC.java

9 Compile o arquivo IMC.java e execute o programa.

10 Na pasta metodos, crie um arquivo chamado Arrays.java. Implemente um método que preencha
um array com números inteiros aleatórios entre 0 e 100. Implemente também um método que exiba
os valores armazenados em um array de int.

1 class Arrays {
2 public static void main(String [] args) {
3 int[] array1 = new int [5];

264 www.k19.com.br

265 MÉTODOS

4 int[] array2 = new int [10];
5
6 preencheArray(array1);
7 preencheArray(array2);
8
9 exibeArray(array1);
10 exibeArray(array2);
11 }
12
13
14
15
16 }

Código Java 6.25: Arrays.java

11 Compile o arquivo Arrays.java e execute o programa.

12 Acrescente um método na classe Arrays para contar a quantidade de números pares de um array.

1 class Arrays {
2 public static void main(String [] args) {
3 int[] array1 = new int [5];
4 int[] array2 = new int [10];
5
6 preencheArray(array1);
7 preencheArray(array2);
8
9 exibeArray(array1);
10 exibeArray(array2);
11
12 int pares1 = contaPar(array1);
13 int pares2 = contaPar(array2);
14
15 System.out.println("Quantidade de pares do primeiro array: " + pares1);
16 System.out.println("Quantidade de pares do segundo array: " + pares2);
17 }
18
19
20
21 static void preencheArray(int[] array) {
22 for(int i = 0; i < array.length; i++) {
23 array[i] = (int)(Math.random () * 100);
24 }
25 }
26
27 static void exibeArray(int[] array) {
28 System.out.println("Array: ");
29 for(int i = 0; i < array.length; i++) {
30 System.out.println("array[" + i + "] = " + array[i]);
31 }
32 System.out.println("------------------------------------");
33 }
34 }

Código Java 6.26: Arrays.java

13 Compile o arquivo Arrays.java e execute o programa.

6.6 Passagem de Parâmetros

www.facebook.com/k19treinamentos 265

MÉTODOS 266

No exemplo abaixo, duas variáveis foram definidas no método main: a e b. Analogamente, duas va-
riáveis com os mesmos nomes foram definidas no método exibeSoma. Apesar de terem nomes iguais,
as variáveis do método main são independentes das variáveis do método exibeSoma e vice-versa.

1 class Programa {
2 public static void main(String [] args) {
3 double a = 5.6;
4 double b = 7.1;
5
6 exibeSoma(a, b);
7 }
8
9 static double exibeSoma(double a, double b) {
10 System.out.println(a + b);
11 }
12 }

Código Java 6.27: Programa.java

Na linha 6, quando o método exibeSoma é chamado, o valor armazenado na variável a do método
main é copiado para a variável a do método exibeSoma. Analogamente, o valor armazenado na variável
b do método main é copiado para a variável b do método exibeSoma.

Alterações nos valores armazenados nas variáveis do método exibeSoma não afetam o conteúdo
das variáveis do método main e vice-versa.

Para exemplificar esse comportamento, considere o código abaixo. Na linha 3, a variável a do
método main foi declarada e inicializada com o valor 1. Na chamada do método teste, na linha 5, o
valor armazenado nessa variável é copiado para a variável a do método teste. O conteúdo da variável
a do método teste é alterado na linha 11 e essa variável passa a armazenar o valor 2. Quando o fluxo
de execução volta para o método main, o método println é utilizado para exibir o valor da variável a do
método main. Essa variável armazena o valor 1. Portanto, na saída padrão, o número 1 será exibido.

1 class Programa {
2 public static void main(String [] args) {
3 int a = 1;
4
5 teste(a);
6
7 System.out.println(a); // exibe 1
8 }
9
10 static void teste(int a) {
11 a = 2;
12 }
13 }

Código Java 6.28: Programa.java

266 www.k19.com.br

267 MÉTODOS

Simulação

Nessa simulação, mostraremos um exemplo de passagem de parâmetros.

1 Na execução da linha 3, uma variável do tipo int chamada a é declarada e inicializada com o
valor 1. Essa variável é uma variável local do método main.

1 class Parametros {
2 public static void main(String [] args) {
3 int a = 1;
4 troca(a);
5 System.out.println(a);
6 }
7 static void troca(int a) {
8 a = 2;
9 }
10 }

amain = 1

2 Em seguida, na linha 4, o método troca é chamado. O valor armazenado na variável a do método
main é passado como argumento nessa chamada de método.

1 class Parametros {
2 public static void main(String [] args) {
3 int a = 1;
4 troca(a);
5 System.out.println(a);
6 }
7 static void troca(int a) {
8 a = 2;
9 }
10 }

amain = 1

3 Agora, a variável a do método troca recebe o valor passado como argumento no passo anterior.
Essa variável é uma variável local do método troca.

1 class Parametros {
2 public static void main(String [] args) {
3 int a = 1;
4 troca(a);
5 System.out.println(a);
6 }
7 static void troca(int a) {
8 a = 2;
9 }
10 }

amain = 1

atroca = 1

4 Na execução da linha 8, o valor da variável a do método troca é alterado. Essa alteração não afeta
o valor da variável a do método main, pois essas variáveis são independentes.

www.facebook.com/k19treinamentos 267

MÉTODOS 268

1 class Parametros {
2 public static void main(String [] args) {
3 int a = 1;
4 troca(a);
5 System.out.println(a);
6 }
7 static void troca(int a) {
8 a = 2;
9 }
10 }

amain = 1

atroca = 2

5 O fluxo de execução volta para o método main. Ao executar a linha 5, o valor da variável a do
método main é exibido na saída padrão, ou seja, o número 1 é exibido na saída padrão.

1 class Parametros {
2 public static void main(String [] args) {
3 int a = 1;
4 troca(a);
5 System.out.println(a);
6 }
7 static void troca(int a) {
8 a = 2;
9 }
10 }

amain = 1

1

6.7 Sobrecarga

No exemplo abaixo, o método maximo recebe como parâmetro exatamente dois valores do tipo
double e devolve o maior deles.

1 static double maximo(double a, double b) {
2 if(a > b) {
3 return a;
4 } else {
5 return b;
6 }
7 }

Esse método pode ser utilizado toda vez que temos dois valores do tipo double e desejamos des-
cobrir qual é o maior. As chamadas abaixo mostram a utilização do método maximo.

1 double m1 = maximo (7.8, 9.8);
2 double m2 = maximo (3.2, 1.7);
3 double m3 = maximo (5.4, 4.9);

Agora, considere que, com bastante frequência, é necessário descobrir o máximo entre três valo-
res do tipo double. Para resolver esse problema, o método maximoEntreTresValores foi definido.

1 static double maximoEntreTresValores(double a, double b, double c) {
2 if(a >= b && a >= c) {
3 return a;
4 } else if(b >= a && b >= c) {
5 return b;

268 www.k19.com.br

269 MÉTODOS

6 } else {
7 return c;
8 }
9 }
10
11 static double maximo(double a, double b) {
12 if(a >= b) {
13 return a;
14 } else {
15 return b;
16 }
17 }

Os dois métodos acima possuem objetivos muito parecidos. Um deles descobre quem é o maior
entre dois valores do tipo double. O outro descobre quem é o maior entre três valores do tipo double.
Esses métodos podem ser utilizados de forma semelhante ao apresentado no código abaixo.

1 double m1 = maximo (7.8, 9.8);
2 double m2 = maximoEntreTresValores (3.2, 1.7, 4.1);

De forma análoga e conforme a necessidade, poderíamos definir o método maximoEntreQuatroVa-

lores ou maximoEntreCincoValores. Do ponto de vista prático, não é interessante ter métodos com ob-
jetivos tão semelhantes mas com nomes diferentes.

Para simplificar, podemos definir diversos métodos com o mesmo nome. No exemplo abaixo,
três métodos chamados maximo foram definidos. As quantidades de parâmetros que esses métodos
recebem são diferentes.

1 static double maximo(double a, double b, double c, double d) {
2 // codigo
3 }
4
5 static double maximo(double a, double b, double c) {
6 // codigo
7 }
8
9 static double maximo(double a, double b) {
10 // codigo
11 }

Nas chamadas desses métodos, eles são diferenciados de acordo com a quantidade de argumen-
tos utilizados. No código a seguir, a primeira chamada aciona o método maximo que recebe dois parâ-
metros. A segunda chamada aciona o método maximo que recebe três parâmetros. A terceira chamada
aciona o método maximo que recebe quatro parâmetros.

1 double m1 = maximo (7.8, 9.8);
2 double m2 = maximo (3.2, 1.7, 4.1);
3 double m3 = maximo (7.5, 6.3, 9.7, 8.8);

A possibilidade de criar métodos com o mesmo nome é denominada sobrecarga.

Regra

Dois métodos podem ter o mesmo nome se as respectivas listas de parâmetros são diferentes em
quantidade ou tipo. Se essa regra não for respeitada, ocorrerá erro de compilação.

www.facebook.com/k19treinamentos 269

MÉTODOS 270

No exemplo abaixo, há uma sobrecarga inválida porque os dois métodos que possuem o mesmo
nome também possuem listas de parâmetros equivalentes. Os dois recebem dois parâmetros do tipo
double.

1 static double metodo(double a, double b) {
2 // codigo
3 }
4
5 static double metodo(double c, double d) {
6 // codigo
7 }

6.8 Varargs

No exemplo abaixo, o método calculaSomatorio recebe como parâmetro exatamente três valores
do tipo double. Depois, ele calcula e devolve o somatório desses valores.

1 static double calculaSomatorio(double a, double b, double c) {
2 return a + b + c;
3 }

As chamadas abaixo são exemplos de utilização do método calculaSomatorio.

1 double s1 = calculaSomatorio (1.5, 2.7, 6.4);
2 double s2 = calculaSomatorio (5.1, 1.7, 3.2);
3 double s3 = calculaSomatorio (5.5, 4.2, 4.7);
4 double s4 = calculaSomatorio (1.9, 2.1, 5.0);

Observe que o método calculaSomatorio só pode ser utilizado para calcular o somatório de exa-
tamente três valores do tipo double. Contudo, ele seria mais útil se pudesse calcular o somatório de
zero ou mais valores do tipo double. Para isso, o método calculaSomatorio precisa ser capaz de receber
zero ou mais valores como parâmetro.

Agora, no exemplo abaixo, o parâmetro do método calculaSomatorio é um varargs. O que carac-
teriza esse parâmetro ser um varargs é a utilização dos três pontos.

1 static double calculaSomatorio(double ... valores) {
2
3 }

A utilização de um varargs na definição do método calculaSomatorio permite que zero ou mais
valores do tipo double sejam passados como argumento. Dessa forma, as chamadas abaixo são todas
válidas.

1 double s1 = calculaSomatorio ();
2 double s2 = calculaSomatorio (5.1);
3 double s3 = calculaSomatorio (5.5, 4.2);
4 double s4 = calculaSomatorio (1.9, 2.1, 5.0);

A cada chamada, os argumentos do método calculaSomatorio são armazenados em um array. Uma
referência desse array é armazenada no parâmetro valores. Dentro do corpo do método calculaSoma-

torio, o array pode ser manipulado normalmente.

270 www.k19.com.br

271 MÉTODOS

1 static double calculaSomatorio(double ... valores) {
2 double soma = 0;
3 for(int i = 0; i < valores.length; i++) {
4 soma += valores[i];
5 }
6 return soma;
7 }

Agora, considere um método que calcula e devolve a média aritmética de valores do tipo double.
Matematicamente, não faz sentido calcular a média aritmética de zero números. Portanto, esse mé-
todo deve receber pelo menos um argumento do tipo double.

No exemplo abaixo, o método calculaMedia foi definido com um parâmetro do tipo double e um
varags de double. Sendo assim, a cada chamada desse método, é necessário passar como argumento
pelo menos um valor do tipo double.

1 static double calculaMedia(double valor , double ... valores) {
2 double soma = valor;
3 for(int i = 0; i < valores.length; i++) {
4 soma += valores[i];
5 }
6 return soma / (1 + valores.length);
7 }

As seguintes chamadas são exemplos de utilização do método calculaMedia.

1 double m1 = calculaMedia (3.5);
2 double m2 = calculaMedia (5.1, 6.7);
3 double m3 = calculaMedia (5.5, 4.2, 8.9);
4 double m4 = calculaMedia (1.9, 2.1, 5.0, 8.8);

Regra

Há uma regra fundamental relacionada à utilização de varargs. O varargs, se existir, deve ser o
último parâmetro do método correspondente. Dessa forma, as listas de parâmetros dos métodos
abaixo estão corretas.

1 static void metodo1(int ... valores) { }
2
3 static void metodo2(int a, String ... valores) { }
4
5 static void metodo3(double a, char c, double ... valores) { }
6
7 static void metodo4(String a, char ... valores) { }

Por outro lado, os métodos abaixo estão incorretos.

1 static void metodo1(int ... valores , double a) { }
2
3 static void metodo2(String ... valores , int ... numeros) { }
4
5 static void metodo3(double ... valores , char c, int i) { }

Uma conclusão imediata da regra de utilização de varargs é que todo método pode ter no máximo
um parâmetro varargs.

www.facebook.com/k19treinamentos 271

MÉTODOS 272

6.9 Exercícios de Fixação

14 Na pasta metodos, crie m arquivo chamado Produtorio.java. Implemente três métodos para calcu-
lar o produtório de valores do tipo double que serão recebidos como parâmetro. O primeiro método
deve receber dois parâmetros. O segundo método deve receber três parâmetros. O terceiro método
deve receber quatro parâmetros. O nome desses três métodos deve ser produtorio.

1 class Produtorio {
2 public static void main(String [] args) {
3 double p1 = produtorio (10.7, 5.8);
4 double p2 = produtorio (5.8, 9.8, 11.7);
5 double p3 = produtorio (7.1, 9.2, 10.3, 4.5);
6
7 System.out.println(p1);
8 System.out.println(p2);
9 System.out.println(p3);
10 }
11
12
13
14
15
16
17 }

Código Java 6.50: Produtorio.java

15 Compile o arquivo Produtorio.java e execute o programa.

16 Na pasta metodos, crie m arquivo chamado Maximo.java. Implemente um método chamado maximo

que recebe dois valores do tipo double e devolve o maior deles. Implemente outro método chamado
maximo que recebe dois valores do tipo String e devolve uma string que possui mais caracteres.

1 class Maximo {
2 public static void main(String [] args) {
3
4 double a = maximo (10.8, 20.5);
5 String b = maximo("Ana", "Amanda");
6
7 System.out.println(a);
8 System.out.println(b);
9 }
10
11
12
13
14 }

Código Java 6.51: Maximo.java

17 Compile o arquivo Maximo.java e execute o programa.

18 Na pasta metodos, crie m arquivo chamado AchaMaior.java. Implemente apenas um método que
receba pelo menos um parâmetro do tipo double e que devolva o maior valor entre os seus argumen-

272 www.k19.com.br

273 MÉTODOS

tos.

1 class AchaMaior {
2 public static void main(String [] args) {
3
4 double m1 = achaMaior (1.5);
5 double m2 = achaMaior (5.3, 8.5, 3.4);
6 double m3 = achaMaior (3.2, 7.4, 5.1, 9.7);
7
8 System.out.println(m1);
9 System.out.println(m2);
10 System.out.println(m3);
11 }
12
13
14 }

Código Java 6.52: AchaMaior.java

19 Compile o arquivo AchaMaior.java e execute o programa.

20 Na pasta metodos, crie m arquivo chamado Concatenacao.java. Implemente um método chamado
concatena. Esse método deve receber zero ou mais parâmetros do tipo String e devolver a concate-
nação dessas strings. Uma chamada a esse método sem a passagem de argumentos deve devolver a
string vazia.

1 class Concatenacao {
2 public static void main(String [] args) {
3
4 String s1 = concatena("a", "ba", "ca", "xi");
5 String s2 = concatena ();
6 String s3 = concatena("mo", "ran", "go");
7
8 System.out.println(s1);
9 System.out.println(s2);
10 System.out.println(s3);
11 }
12
13
14 }

Código Java 6.53: Concatenacao.java

21 Compile o arquivo Concatenacao.java e execute o programa.

6.10 Erro: Parâmetros incompatíveis

Um erro de compilação comum em Java ocorre quando um método é chamado com parâmetros
incompatíveis.

1 class Programa {
2 public static void main(String [] args) {
3 metodo ();
4 metodo (10.1, 10.1, "k19");
5 metodo("10", "10.1", "k19");
6 }
7

www.facebook.com/k19treinamentos 273

MÉTODOS 274

8 static void metodo(int a, double b, String c) {
9 return a + b + c;
10 }
11 }

Código Java 6.54: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: method metodo in class Programa cannot be applied to given types;
metodo ();
^

required: int ,double ,String
found: no arguments
reason: actual and formal argument lists differ in length

Programa.java :4: error: incompatible types: possible lossy conversion from double to int
metodo (10.1, 10.1, "k19");

^
Programa.java :5: error: incompatible types: String cannot be converted to int

metodo ("10", "10.1" , "k19 ");
^

Programa.java :9: error: incompatible types: unexpected return value
return a + b + c;

^
Note: Some messages have been simplified; recompile with -Xdiags:verbose to get full output
4 errors

Terminal 6.4: Erro de compilação

6.11 Erro: Resposta incompatível

Um erro de compilação comum em Java ocorre quando armazenamos a resposta de um método
em variáveis de tipos incompatíveis.

1 class Programa {
2 public static void main(String [] args) {
3 int a = metodo ();
4 double b = metodo ();
5 boolean c = metodo ();
6 }
7
8 static String metodo () {
9 return "k19";
10 }
11 }

Código Java 6.55: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: incompatible types: String cannot be converted to int
int a = metodo ();

^
Programa.java :4: error: incompatible types: String cannot be converted to double

double b = metodo ();
^

Programa.java :5: error: incompatible types: String cannot be converted to boolean
boolean c = metodo ();

^
3 errors

Terminal 6.5: Erro de compilação

274 www.k19.com.br

275 MÉTODOS

6.12 Erro: Esquecer a instrução return

Um erro de compilação comum em Java ocorre quando um método que deve devolver uma res-
posta (um método não void) não a devolve. Isso pode acontecer, por exemplo, quando a instrução
return não está presente no corpo do método. Veja o exemplo abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 int resposta = teste();
4 }
5
6 static int teste() {
7 System.out.println (1);
8 }
9 }

Código Java 6.56: Programa.java

Note que o método teste não devolve uma resposta. Como esse método não é void, ocorre um
erro de compilação. A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :8: error: missing return statement
}
^

1 error

Terminal 6.6: Erro de compilação

O código a seguir possui o mesmo problema.

1 class Programa {
2 public static void main(String [] args) {
3 int resposta = teste();
4 }
5
6 static int teste() {
7 double valor = Math.random ();
8 if(valor > 0.5) {
9 return 1;
10 }
11 }
12 }

Código Java 6.57: Programa.java

No exemplo acima, se o valor gerado pelo método Math.random for menor ou igual a 0.5, o método
teste não devolverá resposta. Novamente, como esse método não é void ocorre um erro de compila-
ção. A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :11: error: missing return statement
}
^

1 error

Terminal 6.7: Erro de compilação

www.facebook.com/k19treinamentos 275

MÉTODOS 276

6.13 Erro: Não utilizar parênteses

Um erro de compilação comum em Java ocorre quando não utilizamos parênteses na declaração
ou na chamada de um método. No exemplo abaixo, o método teste foi declarado sem parênteses.

1 class Programa {
2 public static void main(String [] args) {
3 teste();
4 }
5
6 static void teste {
7 System.out.println("K19");
8 }
9 }

Código Java 6.58: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :6: error: ’(’ expected
static void teste {

^
1 error

Terminal 6.8: Erro de compilação

Neste outro exemplo, o método teste foi declarado corretamente, mas foi chamado sem parên-
teses.

1 class Programa {
2 public static void main(String [] args) {
3 teste;
4 }
5
6 static void teste() {
7 System.out.println("K19");
8 }
9 }

Código Java 6.59: Programa.java

A mensagem de erro de compilação seria semelhante à apresentada abaixo.

Programa.java :3: error: not a statement
teste;
^

1 error

Terminal 6.9: Erro de compilação

6.14 Exercícios Complementares

1 Na pasta metodos, crie um arquivo chamado AnoBissexto.java. Implemente um método que de-
termina se um ano é ou não é bissexto. A regra para determinar se um ano é bissexto é a seguinte:

• Se ele for múltiplo de 400, então é bissexto.

276 www.k19.com.br

277 MÉTODOS

• Caso contrário, se ele for múltiplo de 100, então não é bissexto.

• Caso contrário, se for múltiplo de 4, então é bissexto.

• Caso contrário, não é bissexto.

Complete o código a seguir.

1 class AnoBissexto {
2 public static void main(String [] args) {
3 boolean b = bissexto (2000);
4 System.out.println("2000 " + b);
5
6 b = bissexto (2012);
7 System.out.println("2012 " + b);
8
9 b = bissexto (2025);
10 System.out.println("2025 " + b);
11
12 b = bissexto (2100);
13 System.out.println("2100 " + b);
14 }
15
16
17 }

Código Java 6.60: AnoBissexto.java

2 Na pasta metodos, crie um arquivo chamado VerificaDatas.java. Implemente um método que ve-
rifica se uma determinada data é válida ou não. Lembre-se que Janeiro, Março, Maio, Julho, Agosto,
Outubro e Dezembro possuem 31 dias; Abril, Junho, Setembro e Novembro possuem 30 dias; e Feve-
reiro possui 28 dias em anos não bissextos e 29 dias em anos bissextos. Complete o código a seguir.

1 class VerificaDatas {
2 public static void main(String [] args) {
3 boolean b = verificaData (29, 2, 2000);
4
5 System.out.println("29/02/2000 - " + b);
6
7 b = verificaData (29, 2, 2004);
8
9 System.out.println("29/02/2004 - " + b);
10
11 b = verificaData (31, 4, 2000);
12
13 System.out.println("31/04/2000 - " + b);
14 }
15
16 static boolean bissexto(int ano) {
17 return ano % 400 == 0 || (ano % 100 != 0 && ano % 4 == 0);
18 }
19
20
21 }

Código Java 6.61: VerificaDatas.java

3 A Páscoa é um evento religioso que ocorre todo ano e pode cair em uma data entre 22 de Março
e 25 de Abril. O astrônomo Jean Baptiste Joseph Delambre desenvolveu um algoritmo para calcular a
data da Páscoa para qualquer ano após 1583. Veja as operações necessárias para realizar esse cálculo.

www.facebook.com/k19treinamentos 277

MÉTODOS 278

1 a = ano MOD 19
2 b = ano / 100
3 c = ano MOD 100
4 d = b / 4
5 e = b MOD 4
6 f = (b + 8) / 25
7 g = (b - f + 1) / 3
8 h = (19 * a + b -d - g + 15) MOD 30
9 i = c / 4
10 k = c MOD 4
11 l = (32 + 2 * e + 2 * i - h - k) MOD 7
12 m = (a + 11 * h + 22 * l) / 451
13
14 mes = (h + 1 - 7 * m + 114) / 31
15 dia ((h + 1 - 7 * m + 114) MOD 31) + 1

Na pasta metodos, crie um arquivo chamado Pascoa.java. Implemente um método que determina
a data da Páscoa de um determinado ano posterior a 1583. Complete o código a seguir.

1 class Pascoa {
2 public static void main(String [] args) {
3 String s = pascoa (2000);
4 System.out.println("Páscoa " + s);
5
6 s = pascoa (2012);
7 System.out.println("Páscoa " + s);
8
9 s = pascoa (2025);
10 System.out.println("Páscoa " + s);
11
12 s = pascoa (2100);
13 System.out.println("Páscoa " + s);
14 }
15
16
17 }

Código Java 6.63: Pascoa.java

4 Na pasta metodos, crie um arquivo chamado DiaDaSemana.java. Implemente um método que de-
termina a partir de uma data (dia, mês e ano) qual será o dia da semana (domingo, segunda, terça,
quarta, quinta, sexta e sábado). Existem diversos algoritmos para resolver esse problema. Claus Ton-
dering descreve em http://www.faqs.org/faqs/calendars/faq/part1/ uma forma bem simples
de solucionar esse problema. A solução utiliza operações matemáticas básicas.

1 a = (14 - mes) / 12;
2 y = ano - a;
3 m = mes + 12 * a - 2;
4 q = dia + 31 * m / 12 + y + y / 4 - y / 100 + y / 400;
5 d = q MOD 7;

O valor d indica o dia da semana de acordo com a seguinte correspondência.

278 www.k19.com.br

http://www.faqs.org/faqs/calendars/faq/part1/

279 MÉTODOS

d dia da semana
0 Domingo
1 Segunda
2 Terça
3 Quarta
4 Quinta
5 Sexta
6 Sábado

Complete o código a seguir.

1 class DiaDaSemana {
2 public static void main(String [] args) {
3 int d1 = diaDaSemana (30, 10, 1984);
4
5 int d2 = diaDaSemana (2, 4, 1985);
6
7 int d3 = diaDaSemana (12, 12, 1982);
8
9 String [] dias = {
10 "domingo",
11 "segunda",
12 "terça",
13 "quarta",
14 "quinta",
15 "sexta",
16 "sábado"
17 };
18
19 System.out.println("30/10/1984 foi " + dias[d1]);
20
21 System.out.println("2/4/1985 foi " + dias[d2]);
22
23 System.out.println("12/12/1982 foi " + dias[d3]);
24 }
25
26
27 }

Código Java 6.65: DiaDaSemana.java

5 Na pasta metodos, crie um arquivo chamado ExibeCalendario.java. Implemente um método que
dado um mês e um ano exiba no terminal o calendário de forma semelhante ao exemplo a seguir.

Dom Seg Ter Qua Qui Sex Sab
01 02 03 04

05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Complete o código a seguir.

1 class ExibeCalendario {
2 public static void main(String [] args) {
3
4 exibeCalendario (10, 1984);
5
6 exibeCalendario (4, 1985);
7

www.facebook.com/k19treinamentos 279

MÉTODOS 280

8 exibeCalendario (12, 1982);
9
10 exibeCalendario (2, 2000);
11
12 }
13
14 static boolean bissexto(int ano){
15 return ano % 400 == 0 || (ano % 100 != 0 && ano % 4 == 0);
16 }
17
18 static int diaDaSemana(int dia , int mes , int ano) {
19 int a = (14 - mes) / 12;
20 int y = ano - a;
21 int m = mes + 12 * a - 2;
22 int q = dia + 31 * m / 12 + y + y / 4 - y / 100 + y / 400;
23 int d = q % 7;
24
25 return d;
26 }
27
28
29 }

Código Java 6.66: ExibeCalendario.java

6.15 Resumo

1 Para evitar a repetição de um determinado trecho de código, podemos criar um método.

2 Um método possui uma marcação de retorno, um nome, uma lista de parâmetros e um corpo.

3 Um método pode ter zero ou mais parâmetros.

4 Um parâmetro é uma variável local de um método.

5 A palavra reservada void é utilizada em métodos que não devolvem resposta.

6 A palavra reservada return é utilizada para finalizar um método e devolver uma resposta caso o
método não seja void.

7 As variáveis locais de um método não podem ser alteradas em outro método.

8 Sobrecarga é a possibilidade de definir métodos com o mesmo nome.

9 Métodos com o mesmo nome devem ter lista de parâmetros diferentes.

280 www.k19.com.br

281 MÉTODOS

10 Um método pode receber uma quantidade variável de parâmetros utilizando varargs.

6.16 Prova

1 Qual alternativa está correta?

a) Um método pode ter vários tipos de retorno.

b) Obrigatoriamente, os métodos precisam ter parâmetros.

c) Um método definido com void não devolve resposta.

d) Um método deve sempre devolver uma resposta.

e) A palavra return é utilizada para guardar a resposta de uma função.

2 Considere o seguinte método.

1 static void teste() {
2 int a = 1;
3 }

Qual alternativa está correta?

a) O método teste não devolve resposta.

b) O método teste sempre devolve o valor 1.

c) O método teste recebe um valor do tipo int como parâmetro.

d) O método teste não compila pois faltou o comando return.

e) O método teste devolve valores do tipo int.

3 Considere o seguinte método.

1 static double teste(int a, double b) {
2 return a + b;
3 }

Qual chamada a esse método está correta?

1 // I
2 int a = teste (1.0, 1.0);

1 // II
2 double a = teste (1.0, 1.0);

www.facebook.com/k19treinamentos 281

MÉTODOS 282

1 // III
2 int a = teste(1, 1.0);

1 // IV
2 double a = teste (1.0, 1);

1 // V
2 double a = teste(1, 1);

a) I

b) II

c) III

d) IV

e) V

4 Considere o seguinte método.

1 static int teste(int a, int b) {
2 return a + b;
3 }

Quais chamadas a esse método estão corretas?

1 // I
2 int a = teste (1.0, 1.0);

1 // II
2 double a = teste(1, 1);

1 // III
2 int a = teste(1, 1);

1 // IV
2 int a = teste (1);

1 // V
2 int a = teste (1; 1);

a) Todas

b) I, II e III

c) II e IV

d) II e III

282 www.k19.com.br

283 MÉTODOS

e) Nenhuma

5 Considere o seguinte método.

1 static double teste(int a, int b) {
2 return a + b;
3 }

Qual alternativa está correta?

a) O método teste não devolve resposta.

b) O método teste não compila pois métodos que devolvem double não podem devolver valores
do tipo int.

c) O método teste não compila pois métodos não podem receber dois parâmetros.

d) O método teste não compila pois ele deveria ser void.

e) O método teste não possui nenhum problema.

6 Considere o seguinte método.

1 static String teste(int a, int b) {
2 return a + b;
3 }

Qual alternativa está correta?

a) O método teste não devolve resposta.

b) O método teste não compila pois métodos que devolvem String não podem devolver valores
do tipo int.

c) O método teste não compila pois ele deveria receber duas strings como parâmetro.

d) O método teste compilaria com uma operação de casting.

e) O método teste não possui nenhum problema.

7 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 double a = 1.7;
4 trocaValor(a);
5 System.out.println(a);
6 }
7
8 static void trocaValor(double a) {
9 a = 3.4;
10 }
11 }

www.facebook.com/k19treinamentos 283

MÉTODOS 284

Qual alternativa está correta?

a) Há um erro de compilação na linha 4.

b) Ao executar a classe Programa, o número 3.4 será exibido.

c) Ao executar a classe Programa, o número 1.7 será exibido.

d) Há erro de compilação porque a classe Programa possui duas variáveis com o mesmo nome.

e) Todas as alternativas anteriores estão incorretas.

8 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 double [] a = { 1.7, 3.4 };
4 trocaValor(a);
5 System.out.println(a[0]);
6 System.out.println(a[1]);
7 }
8
9 static void trocaValor(double [] a) {
10 a[0] = 2.5;
11 a[1] = 4.1;
12 }
13 }

Qual alternativa está correta?

a) Há um erro de compilação na linha 3.

b) Há um erro de execução na linha 3.

c) Ao executar a classe Programa, os números 1.7 e 3.4 serão exibidos.

d) Ao executar a classe Programa, os números 2.5 e 4.1 serão exibidos.

e) Ao executar a classe Programa, nada será exibido.

9 Qual alternativa está correta?

a) A possibilidade de criar métodos com nomes diferentes é chamada de sobrecarga.

b) Dois métodos diferentes não podem ter variáveis locais com o mesmo nome.

c) O recurso do varargs permite que métodos recebam uma quantidade variável de argumentos.

d) Um método pode alterar o valor das variáveis locais de qualquer outro método.

e) Todas as alternativas anteriores estão incorretas.

284 www.k19.com.br

285 MÉTODOS

10 Considere as seguintes declarações de métodos.

1 // I
2 static void metodo(int valores ...) { }
3
4 // II
5 static void metodo(int ... valores) { }
6
7 // III
8 static void metodo(int ... valores , int v) { }
9
10 // IV
11 static void metodo(int v, int ... valores) { }
12
13 // V
14 static void metodo(int ... v1, int ... v2) { }

Quais declarações estão corretas?

a) I e II

b) II e III

c) II, III e IV

d) II e IV

e) II e V

11 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 teste();
4 teste (1,2);
5 teste (1,2,3);
6 }
7
8
9 }

O que pode ser inserido na linha 8 para fazer o código compilar sem erros?

a) static void teste(int a) { }

b) static void teste(int ... a, int b) { }

c) static void teste(int[] a) { }

d) static void teste(int a[]) { }

e) static void teste(int ... a) { }

Minha Pontuação Pontuação Mínima: 8 Pontuação Máxima: 11

www.facebook.com/k19treinamentos 285

MÉTODOS 286

286 www.k19.com.br

STRING

C
A

P
Í

T
U

L
O

7
7.1 Referências

Em Java, as strings são objetos. Para controlar um objeto, é necessário possuir uma referência
desse objeto. Uma referência de uma string é como um controle remoto de uma TV. Através de um
controle remoto, podemos controlar uma TV. Através de uma referência, podemos controlar uma
string.

1

2

3

4

5

6

7

8

9

-/--

0

CH

Figura 7.1: Controle remoto de uma TV

Importante

As variáveis do tipo String não armazenam os objetos do tipo String. Elas armazenam
referências para esses objetos.

Ao executar o código abaixo, um objeto do tipo String será criado com o conteúdo “Rafael”. A
referência desse objeto será armazenada na variável nome.

1 class Programa {
2 public static void main(String [] args) {
3 String nome = "Rafael";
4 }
5 }

www.facebook.com/k19treinamentos 287

STRING 288

7.2 Pool de Strings

Um objeto do tipo String pode ter até 2147483647 caracteres. Cada caractere ocupa 16 bits. Po-
tencialmente, o espaço necessário para manter objetos do tipo String é bem maior do que o espaço
necessário para manter valores primitivos. Por isso, em diversas linguagens de programação, inclu-
sive em Java, objetos do tipo String são compartilhados para diminuir o espaço ocupado por eles.

Por exemplo, na linha 3 do código abaixo, ao utilizar a string literal “Rafael”, um objeto do tipo
String é criado para armazenar essa sequência de caracteres. Esse objeto é colocado no pool de
strings. Uma referência desse objeto é armazenada na variável a.

Na linha 4, a string literal “Rafael” é utilizada pela segunda vez. O objeto criado na linha ante-
rior está no pool de strings e possui o mesmo conteúdo. Sendo assim, ao invés de criar um novo
objeto, reaproveita-se o mesmo. Uma referência desse objeto é armazenada na variável b. Portanto,
as variáveis a e b guardam referências para o mesmo objeto.

1 class Programa {
2 public static void main(String [] args) {
3 String a = "Rafael";
4 String b = "Rafael";
5 }
6 }

Código Java 7.2: Strings literais

O pool de strings é um repositório no qual objetos do tipo String são armazenados para serem
reaproveitados. No pool de strings não há strings repetidas (objetos do tipo String que armazenam a
mesma sequência de caracteres).

Importante

Objetos do tipo String criados com o operador new não são colocados no pool de strings.
Dessa forma, eles não são reaproveitados. No exemplo abaixo, dois objetos do tipo String com o
mesmo conteúdo serão criados. A variável a armazenará uma referência do primeiro objeto e a
variável b armazenará uma referência do segundo objeto.

1 class Programa {
2 public static void main(String [] args) {
3 String a = new String("Rafael");
4 String b = new String("Rafael");
5 }
6 }

Código Java 7.3: Criando strings com o operador new

Mais Sobre

Considere um objeto do tipo String. Esse objeto pode estar ou não no pool de strings.
Através do método intern, podemos obter uma referência para um objeto do tipo String com o
mesmo conteúdo que esteja no pool de Strings.

No exemplo abaixo, um objeto do tipo String foi criado na linha 3 com o operador new. Conse-
quentemente, esse objeto não é armazenado no pool de Strings. Na linha 4, o método intern

288 www.k19.com.br

289 STRING

devolve uma referência do objeto do tipo String que possui o mesmo conteúdo do objeto criado
na linha 3.

1 class Programa {
2 public static void main(String [] args) {
3 String a = new String("Rafael");
4 String b = a.intern ();
5 }
6 }

Código Java 7.4: Utilizando o método intern

No exemplo seguinte, um objeto do tipo String foi criado na linha 3 com a utilização da string
literal “Rafael”. Consequentemente, esse objeto é armazenado no pool de strings. Na linha 4, o
método intern devolve uma referência do objeto criado na linha 3.

1 class Programa {
2 public static void main(String [] args) {
3 String a = "Rafael";
4 String b = a.intern ();
5 }
6 }

Código Java 7.5: Utilizando o método intern

7.3 Diferença Entre o Operador == e o Método equals

Considere duas variáveis a e b do tipo String. Podemos comparar o conteúdo dessas variáveis
com o operador ==. Esse operador devolve true se as duas variáveis armazenam referências para o
mesmo objeto. Caso contrário, ele devolve false.

Para comparar o conteúdo de dois objetos do tipo String, podemos utilizar o método equals. Esse
método devolve true se os dois objetos do tipo String armazenam a mesma sequência de caracteres.

Considere o exemplo abaixo.

1 class ComparacaoDeStrings {
2 public static void main(String [] args) {
3 String a = new String("K19");
4 String b = new String("K19");
5 System.out.println(a.equals(b)); // exibe true
6 System.out.println(a == b); // exibe false
7 }
8 }

Código Java 7.6: ComparacaoDeStrings.java

No método main, são criados dois objetos do tipo String e suas referências são armazenadas nas
variáveis a e b. Como ambos os objetos armazenam a mesma sequência de caracteres (a palavra
“K19”), o método equals devolve true quando aplicado às variáveis a e b.

Como o operador new cria um novo objeto, dois objetos diferentes foram criados nas linhas 3
e 4 do código acima. Como são objetos diferentes, as referências armazenadas nas variáveis a e b

também são diferentes. Assim, quando o operador == é aplicado às variáveis a e b, ele devolve false.

www.facebook.com/k19treinamentos 289

STRING 290

Agora, considere o código abaixo.

1 class ComparacaoDeStrings2 {
2 public static void main(String [] args) {
3 String a = "K19";
4 String b = "K19";
5 System.out.println(a.equals(b)); // exibe true
6 System.out.println(a == b); // exibe true
7 }
8 }

Código Java 7.7: ComparacaoDeStrings2.java

Na linha 3, é criado um objeto do tipo String que armazena a sequência de caracteres “K19”. Esse
objeto é armazenado no pool de strings e a referência desse objeto é armazenada na variável a. Na
linha 4, a sequência de caracteres “K19” é utilizada novamente. Como o objeto criado na linha 3
está no pool de strings e seu conteúdo é justamente a sequência de caracteres “K19”, ao invés de
um novo objeto ser criado na linha 4, o objeto criado na linha 3 é reaproveitado e a variável b passa
a armazenar uma referência desse objeto. Assim, as variáveis a e b armazenam referências iguais.
Portanto, o operador == devolve true quando aplicado a essas duas variáveis.

7.4 Imutabilidade

O conteúdo de um objeto do tipo String não pode ser alterado. Por isso, as strings são conside-
radas imutáveis. Alguns métodos dos objetos do tipo String podem sugerir que o conteúdo de uma
string possa ser alterado. Contudo, esses métodos, geralmente, criam uma cópia da string original
com determinadas alterações.

Por exemplo, na linha 3 do código abaixo, uma string foi criada de forma literal com o conteúdo
“rafael”. Uma referência dessa string foi armazenada na variável a. Na linha 4, o método toUpperCase

foi utilizado. Esse método cria uma cópia da string original substituindo as letras minúsculas por
letras maiúsculas e devolve uma referência dessa cópia. Dessa forma, a variável b armazenará uma
referência de um objeto do tipo String com o conteúdo “RAFAEL”.

1 class Programa {
2 public static void main(String [] args) {
3 String a = "rafael";
4 String b = a.toUpperCase ();
5
6 System.out.println(a); // rafael
7 System.out.println(b); // RAFAEL
8 }
9 }

Código Java 7.8: Utilizando o método toUpperCase

7.5 StringBuilder

Em algumas situações, é necessário “montar” uma string através de concatenações sucessivas.
No exemplo abaixo, uma lista de números é criada através de uma sequência de concatenações.

1 class Programa {
2 public static void main(String [] args) {
3 String numeros = "";

290 www.k19.com.br

291 STRING

4 for(int i = 0; i < 1000; i++) {
5 numeros = numeros + i + " ";
6 }
7 System.out.println(numeros);
8 }
9 }

Código Java 7.9: Montando uma lista de números com concatenações

A cada concatenação, um novo objeto do tipo String é criado. No for do código anterior, duas mil
concatenações serão realizadas no total. Dessa forma, dois mil objetos do tipo String serão criados.
A criação de muitos objetos prejudica a performance dos programas.

Nessas situações, podemos utilizar um objeto do tipo StringBuilder. Na linha 3 do exemplo abaixo,
um string builder vazio foi criado. No corpo do for, o método append foi utilizado para adicionar con-
teúdo ao string builder. Depois do laço, o método toString foi utilizado para obter uma string com o
conteúdo armazenado no string builder.

1 class Programa {
2 public static void main(String [] args) {
3 StringBuilder builder = new StringBuilder ();
4 for(int i = 0; i < 1000; i++) {
5 builder.append(i);
6 builder.append(" ");
7 }
8 String numeros = builder.toString ();
9 System.out.println(numeros);
10 }
11 }

Código Java 7.10: Montando uma lista de números com StringBuilder

Diferentemente das concatenações com o operador +, o método append não cria novos objetos.
Portanto, a performance do programa não é comprometida.

7.6 Formatação

Considere um programa que registra as compras dos clientes nos caixas de um supermercado.
Quando uma compra é finalizada, o programa deve exibir o cupom fiscal. Esse cupom deve conter
o nome, o preço unitário e a quantidade de cada produto, além do valor total por produto e o valor
total da compra. O preço unitário deve ser exibido com 2 casas decimais e alinhado à direita. A
quantidade deve ser exibida sempre com 3 dígitos. O preço total por produto deve ser exibido com 2
casas decimais e alinhado à direita. Veja o exemplo abaixo.

www.facebook.com/k19treinamentos 291

STRING 292

--
CUPOM FISCAL

--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002 37.50
Chocolate 5.00 003 15.00
Refrigerante 3.89 014 54.46
Bolacha 1.80 058 104.40
--
TOTAL: 211.36
--

Separando as informações do cupom fiscal

Considere que a largura da tela do dispositivo permite a exibição de 42 caracteres por linha. Para
separar as informações presentes no cupom fiscal, podemos utilizar linhas formadas por 42 carac-
teres iguais. No exemplo acima, escolhemos o caractere “-” e utilizamos o seguinte comando para
exibir cada uma dessas linhas:

1 System.out.println("--");

Exibindo o título do cupom fiscal

O título “CUPOM FISCAL” deve ser exibido na segunda linha de forma centralizada. Como o
dispositivo permite a exibição de 42 caracteres por linha e esse título possui 12 caracteres, são ne-
cessários 15 espaços em branco à esquerda do texto “CUPOM FISCAL” para centralizar esse título.
Para resolver esse problema, podemos usar o método println acrescentado os 15 espaços em branco
diretamente no código.

1 System.out.println(" CUPOM FISCAL");

Ao invés do método println, podemos usar o método format para exibir o título do cupom fiscal
de forma centralizada. O método format não adiciona automaticamente uma quebra de linha no final
da mensagem exibida. Por isso, no exemplo abaixo, adicionamos uma quebra de linha manual com
a sequência de escape “\n”.

1 System.out.format(" CUPOM FISCAL\n");

O método format aceita uma quantidade variável de argumentos. O primeiro argumento do mé-
todo format é obrigatório e é chamado de string de formatação. Os demais argumentos são combi-
nados com a string de formatação para definir a mensagem que será exibida.

No exemplo abaixo, quando a string de formatação for combinada com o segundo argumento do
método format, o trecho “%s” será substituído por “CUPOM FISCAL”. Dessa forma, o título do cupom
fiscal será exibido da forma desejada.

1 System.out.format(" %s\n", "CUPOM FISCAL");

292 www.k19.com.br

293 STRING

Os 15 espaços em branco acrescentados diretamente no código fonte podem gerar algumas difi-
culdades. Por exemplo, não é fácil verificar se há exatamente 15 espaços em branco olhando o código
fonte. Para melhorar a legibilidade do código, podemos trocar o trecho “%s” por “%27s”. O número
27 indica a quantidade miníma de caracteres que devem ser utilizados para formar a mensagem que
será exibida.

1 System.out.format("%27s\n", "CUPOM FISCAL");

No exemplo acima, quando a string de formatação for combinada com o segundo argumento
do método format, o trecho “%27s” será substituído por “CUPOM FISCAL”. Contudo, 15 espaços em
branco serão adicionados à esquerda desse texto para completar a quantidade mínima de caracteres
que é 27.

Parâmetros da string de formatação

Podemos definir zero ou mais parâmetros na string de formatação. Cada parâmetro começa com
o caractere “%”. Por padrão, o primeiro parâmetro da string de formatação é associado ao segundo
argumento do método format. De forma análoga, o segundo parâmetro da string de formatação é
associado ao terceiro argumento do método format e assim por diante.

System.out.format("%s %s %s", produto, quantidade, preco);

"Bola" 3 37.65

"Bola 3 37.65"

A correspondência entre os parâmetros da string de formatação e os argumentos do método
format pode ser redefinida através da indexação desses parâmetros. O índice de um parâmetro é
um número inteiro seguido do caractere “$” e deve aparecer imediatamente após o caractere “%”.

System.out.format("%2$s %3$s %1$s", produto, quantidade, preco);

"Bola" 3 37.65

"3 37.65 Bola"

Dois ou mais parâmetros na string de formatação podem ser associados a um mesmo argumento
do método format. Para isso, basta que esses parâmetros possuam o mesmo índice. No exemplo
abaixo, o primeiro e o terceiro parâmetros da string de formatação foram associados ao argumento
“A” e o segundo parâmetro ao argumento “B”. Dessa forma, a mensagem “A B A” seria exibida.

www.facebook.com/k19treinamentos 293

STRING 294

System.out.format("%1$s %2$s %1$s", "A", "B");

A B A

Definindo a quantidade mínima de caracteres

Para cada parâmetro da string de formatação, podemos definir a quantidade mínima de caracte-
res que devem ser utilizados quando a string de formatação é combinada com os demais argumentos
do método format.

No exemplo abaixo, o primeiro parâmetro ocupa pelo menos 10 caracteres, o segundo parâmetro
ocupa pelo menos 20 caracteres e o terceiro pelo menos 15 caracteres.

System.out.format("%10s %20s %15s", produto, quantidade, preco);

Alinhamento

No exemplo abaixo, quando a string de formatação for combinada com os demais argumentos
do método format, o parâmetro %16s será substituído pelo argumento “PRODUTO”.

1 System.out.format("%16s", "PRODUTO");

Como o parâmetro %16s define que a quantidade mínima de caracteres é 16 e o argumento “PRO-
DUTO” possui apenas 7 caracteres, 9 espaços são adicionados à esquerda desse argumento. Sendo
assim, seria exibido na saída padrão a string “ PRODUTO”. Portanto, o argumento “PRO-
DUTO” seria alinhado à direita.

Os espaços utilizados para completar a quantidade mínima de caracteres também podem ser
inseridos à direita do argumento “PRODUTO”. Para isso, basta utilizar a flag “-”. Essa flag deve ser
colocada depois do caractere % e antes da quantidade miníma de caracteres. Veja o exemplo a seguir.

1 System.out.format("%-16s", "PRODUTO");

A flag “-” é utilizada para alinhar à esquerda os argumentos do método format.

294 www.k19.com.br

295 STRING

Exibindo os títulos das colunas do cupom fiscal

O cupom fiscal possui quatro colunas para apresentar o nome, o preço unitário, a quantidade e
o preço total de cada produto. Devemos definir a largura de cada coluna e o espaçamento entre elas,
lembrando que cada linha permite no máximo 42 caracteres.

Para cada produto, vamos reservar 16 caracteres para o nome, 10 para o preço unitário, 3 para
a quantidade e 10 para o preço total. Com essa divisão, as quatro colunas ocupam 39 caracteres na
horizontal. Para separar as colunas utilizaremos 1 espaço em branco. Dessa forma, os 42 caracteres
de cada linha serão ocupados.

Figura 7.2: Larguras das colunas do cupom fiscal

No exemplo abaixo, a string de formatação do método format possui quatro parâmetros para os
títulos das colunas. Observe as quantidades mínimas de caracteres definidas para cada parâmetro.
Note também que a flag “-” foi utilizada no primeiro parâmetro para alinhar o primeiro título à es-
querda.

1 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");

Exibindo os nomes dos produtos

No cupom fiscal, a coluna que apresenta os nomes dos produtos deve ocupar 16 caracteres ho-
rizontalmente. Na string de formatação, podemos definir a quantidade mínima de caracteres como
vimos anteriormente.

1 System.out.format("%16s\n", nome);

Com a string de formatação acima, se o nome de um produto tiver menos do que 16 caracte-
res, espaços em branco serão acrescentados à esquerda desse nome para completar a quantidade
mínima de caracteres. Dessa forma, os nomes dos produtos serão alinhados à direita.

Contudo, de acordo com a especificação do cupom fiscal, os nomes dos produtos devem ser
alinhados à esquerda. Sendo assim, os espaços em branco utilizados para completar os 16 caracteres
devem ser acrescentados à direita dos nomes dos produtos.

www.facebook.com/k19treinamentos 295

STRING 296

Para alinhar os nomes dos produtos à esquerda, devemos acrescentar o caractere “-” na string de
formatação como no exemplo abaixo.

1 System.out.format("%-16s\n", nome);

Agora, devemos considerar os nomes dos produtos que possuem mais do que 16 caracteres.
Nesse caso, podemos utilizar o método substring para extrair os primeiros 16 caracteres desses no-
mes.

1 nome = nome.substring(0, Math.min(nome.length (), 16));
2 System.out.format("%-16s\n", nome);

Exibindo os preços unitários dos produtos

No cupom fiscal, a coluna que apresenta os preços unitários dos produtos deve ocupar 10 carac-
teres horizontalmente. Na string de formatação, podemos definir a quantidade mínima de caracteres
como vimos anteriormente.

1 System.out.format("%-16s %10s\n", nome , preco);

Os preços unitários devem ser exibidos com duas casas decimais. Para controlar a quantidade de
casas decimais, devemos utilizar a formatação de números reais. Para isso, é necessário substituir,
na string de formatação, no parâmetro correspondente aos preços dos produtos, o caractere “s” pelo
caractere “f”.

1 System.out.format("%-16s %10f\n", nome , preco);

Agora, para definir que os preços dos produtos devem ser exibidos com exatamente dois dígitos
decimais, basta substituir o parâmetro “%10f” por “%10.2f”. Por padrão, esses preços seriam exibidos
com seis dígitos decimais.

1 System.out.format("%-16s %10.2f\n", nome , preco);

Exibindo as quantidades dos produtos

No cupom fiscal, a coluna que apresenta as quantidades dos produtos deve ocupar 3 caracte-
res horizontalmente. Na string de formatação, podemos definir a quantidade mínima de caracteres
como vimos anteriormente.

1 System.out.format("%-16s %10.2f %3s\n", nome , preco , quantidade);

As quantidades dos produtos são números inteiros. Para poder utilizar as opções de formatação
de números inteiros, devemos substituir o caractere “s” pelo caractere “d”.

1 System.out.format("%-16s %10.2f %3d\n", nome , preco , quantidade);

296 www.k19.com.br

297 STRING

Como as quantidades dos produtos devem ser exibidas sempre com três caracteres, eventual-
mente, zeros devem ser adicionados à esquerda dessas quantidades. Para que isso ocorra automati-
camente, basta acrescentar o caractere “0” na string de formatação, mais especificamente, no parâ-
metro correspondente às quantidades dos produtos.

1 System.out.format("%-16s %10.2f %03d\n", nome , preco , quantidade);

Exibindo os preços totais dos produtos

No cupom fiscal, a coluna que apresenta os preços totais dos produtos deve ocupar 10 caracte-
res horizontalmente. Na string de formatação, podemos definir a quantidade mínima de caracteres
como vimos anteriormente.

1 System.out.format("%-16s %10.2f %03d %10f\n", nome , preco , quantidade , total);

Novamente, para exibir os preços totais dos produtos sempre com exatamente duas casas deci-
mais, é necessário substituir o trecho “%10f” por “%10.2f”.

1 System.out.format("%-16s %10.2f %03d %10.2f\n", nome , preco , quantidade , total);

Exibindo o valor total da compra

O total da compra deve ser exibido com duas casas decimais em uma linha separada. Para isso
podemos utilizar a string de formatação abaixo.

1 System.out.format("TOTAL: %.2f\n", totalDaCompra);

Conversões

No exemplo a seguir, quando a string de formatação for combinada com os demais argumentos
do método format, o trecho “%s” será substituído pelo valor da variável nome, o trecho “%f” será subs-
tituído pelo valor da variável preco e o trecho “%d” pelo valor da variável quantidade. O caractere “s”
indica que o nome deve ser tratado como texto, o caractere “f” indica que o preço deve ser tratado
como número real e o caractere “d” indica que a quantidade deve ser tratada como número inteiro.

1 System.out.format("%s %f %d\n", nome , preco , quantidade);

Além das conversões “s”, “f” e “d”, podemos utilizar nas strings de formatação outras conversões.
Veja na listagem abaixo algumas dessas conversões.

‘B’ ou ‘b’: Se o argumento for null ou false, devolve false. Caso contrário, devolve true.

‘C’ ou ‘c’: Formata valores do tipo byte, short, char e int maiores ou iguais a 0 e menores ou iguais a
1114111 como caracteres do padrão Unicode. Esses valores contemplam todos os caracteres
do Basic Multilingual Plane e alguns caracteres do Supplementary Multilingual Plane.

www.facebook.com/k19treinamentos 297

STRING 298

‘D’ ou ‘d’: Formata o argumento como um número inteiro em formato decimal.

‘o’: Formata o argumento como um número inteiro em formato octal.

‘X’ ou ‘x’: Formata o argumento como um número inteiro em formato hexadecimal.

‘f’: Formata o argumento como um número real em formato decimal.

‘E’ ou ‘e’: Formata o argumento como um número real em notação científica.

‘S’ ou ‘s’: Formata o argumento como string.

Flags

No exemplo abaixo, o valor da variável nome será formatado com pelo menos 20 caracteres. O
caractere “-” indica que o nome deve ser alinhado à esquerda. O valor da variável quantidade será
formatado com pelo menos 5 caracteres. O caractere “0” indica que zeros devem ser adicionados à
esquerda da quantidade até completar o número mínimo de caracteres.

1 System.out.format("%-20s %05d", nome , quantidade);

Além das flags “-” e “0”, podemos utilizar nas strings de formatação outras flags. Veja na listagem
abaixo algumas dessas flags.

‘+’ : Adiciona o sinal “+” nos números positivos.

‘ ’ : Adiciona um espaço em branco à esquerda dos números positivos.

‘(’ : Números negativos são formatados dentro de parênteses.

Mais Sobre

Mais detalhes sobre o funcionamento das formatações podem ser obtidos no endereço:

http://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

7.7 Formatação de Data e Hora

Normalmente, o formato padrão para exibir data e hora varia de país para país ou de região para
região. Por exemplo, os brasileiros estão mais acostumados com o formato de data “dia/mês/ano”.
Por outro lado, os americanos costumam utilizar o formato “mês/dia/ano”.

Em Java, podemos formatar datas e horas facilmente. No exemplo abaixo, a formatação “dia/-
mês/ano hora:minuto:segundos” está sendo aplicada.

1 java.util.Calendar fundacaoK19 =
2 new java.util.GregorianCalendar (2010, 7, 27, 10, 32, 15);
3
4 java.text.SimpleDateFormat sdf =
5 new java.text.SimpleDateFormat("dd/MM/yyyy HH:mm:ss");

298 www.k19.com.br

http://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

299 STRING

6
7 String fundacaoK19Formatada = sdf.format(fundacaoK19.getTime ());

Código Java 7.33: Aplicando o formado "dia/mês/ano hora:minuto:segundos”

Na máscara de formatação, devemos utilizar os caracteres especiais para definir o formato dese-
jado. Veja o que cada caractere indica.

d: dia

M: mês

y: ano

H: hora

m: minutos

s: segundos

Quando o caractere d é utilizado de forma simples na máscara de formatação, os dias de 1 até
9 são formatados com apenas um dígito. Quando utilizamos dd, os dias de 1 até 9 são formatados
com dois dígitos (01, 02, 03, ..., 09). O funcionamento é análogo para o mês, ano, hora, minutos e
segundos.

7.8 Exercícios de Fixação

1 Abra um terminal, entre na pasta dos seus exercícios e crie uma pasta chamada string para os
arquivos desenvolvidos neste capítulo.

2 Na pasta string, crie um arquivo chamado CupomFiscal.java. Implemente um programa que exiba
na saída padrão o cabeçalho do cupom fiscal seguindo o formato abaixo.

--
CUPOM FISCAL

--

Complete o código abaixo.

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out. ("--\n");
4 System.out. (" \n", "CUPOM FISCAL");
5 System.out. ("--\n");
6 }
7 }

Código Java 7.34: CumpoFiscal.java

3 Compile o arquivo CumpoFiscal.java e execute o programa.

www.facebook.com/k19treinamentos 299

STRING 300

4 Altere o arquivo CupomFiscal.java. Implemente um programa que exiba na saída padrão os títulos
das colunas do cupom fiscal. O título da coluna “PRODUTO” deve ocupar pelo menos 16 caracteres
e ser alinhado à esquerda. A coluna “UNITÁRIO” deve ocupar pelo menos 10 caracteres. A coluna
“QTD” deve ocupar pelo menos 3 caracteres e a coluna “TOTAL” pelo menos 10 caracteres. Siga o
formato abaixo.

--
CUPOM FISCAL

--
PRODUTO UNITÁRIO QTD TOTAL
--

Complete o código abaixo. Depois compile e execute novamente.

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format(" \n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8 }
9 }

Código Java 7.35: CumpoFiscal.java

5 Altere o arquivo CupomFiscal.java. Implemente um programa que exiba na saída padrão os nomes
dos produtos com exatamente 16 caracteres e alinhados à esquerda. Siga o formato abaixo.

--
CUPOM FISCAL

--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete
Chocolate
Refrigerante
Bolacha de Choco

Complete o código abaixo. Depois compile e execute novamente.

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 for(int i = 0; i < nomes.length; i++) {
11 if(nomes[i]. length () <= 16) {
12 System.out.format(" \n", nomes[i]);
13 } else {
14 System.out.format(" \n", nomes[i]. substring(0, 16));
15 }
16 }
17 }
18 }

Código Java 7.36: CupomFiscal.java

300 www.k19.com.br

301 STRING

6 Altere o arquivo CupomFiscal.java. Implemente um programa que exiba na saída padrão os preços
dos produtos com exatamente duas casas decimais. Siga o formato abaixo.

--
CUPOM FISCAL

--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75
Chocolate 5.00
Refrigerante 3.89
Bolacha de Choco 1.80

Complete o código abaixo. Depois compile e execute novamente.

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 double [] precos = {18.75 , 5.0, 3.89, 1.8};
11 for(int i = 0; i < nomes.length; i++) {
12 if(nomes[i]. length () <= 16) {
13 System.out.format("%-16s \n", nomes[i], precos[i]);
14 } else {
15 System.out.format("%-16s \n", nomes[i]. substring(0, 16), precos[i]);
16 }
17 }
18 }
19 }

Código Java 7.37: CupomFiscal.java

7 Altere o arquivo CupomFiscal.java. Implemente um programa que exiba na saída padrão as quan-
tidades dos produtos com exatamente 3 caracteres. Se necessário, utilize zeros à esquerda para com-
pletar o número de caracteres. Siga o formato abaixo.

--
CUPOM FISCAL

--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002
Chocolate 5.00 003
Refrigerante 3.89 014
Bolacha de Choco 1.80 058

Complete o código abaixo. Depois compile e execute novamente.

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 double [] precos = {18.75 , 5.0, 3.89, 1.8};
11 int[] quantidades = {2, 3, 14, 58};
12 for(int i = 0; i < nomes.length; i++) {

www.facebook.com/k19treinamentos 301

STRING 302

13 if(nomes[i]. length () <= 16) {
14 System.out.format("%-16s %10.2f \n", nomes[i],
15 precos[i], quantidades[i]);
16 } else {
17 System.out.format("%-16s %10.2f \n", nomes[i]. substring(0, 16),
18 precos[i], quantidades[i]);
19 }
20 }
21 }
22 }

Código Java 7.38: CumpoFiscal.java

8 Altere o arquivo CupomFiscal.java. Implemente um programa que exiba na saída padrão os preços
totais de cada produto com exatamente duas casas decimais. Siga o formato abaixo.

--
CUPOM FISCAL

--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002 37.50
Chocolate 5.00 003 15.00
Refrigerante 3.89 014 54.46
Bolacha de Choco 1.80 058 104.40

Complete o código abaixo. Depois compile e execute novamente.

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 double [] precos = {18.75 , 5.0, 3.89, 1.8};
11 int[] quantidades = {2, 3, 14, 58};
12 for(int i = 0; i < nomes.length; i++) {
13 double totalDoProduto = precos[i] * quantidades[i];
14 if(nomes[i]. length () <= 16) {
15 System.out.format("%-16s %10.2f %03d \n", nomes[i],
16 precos[i], quantidades[i], totalDoProduto);
17 } else {
18 System.out.format("%-16s %10.2f %03d \n", nomes[i]. substring(0, 16),
19 precos[i], quantidades[i], totalDoProduto);
20 }
21 }
22 }
23 }

Código Java 7.39: CumpoFiscal.java

9 Altere o arquivo CupomFiscal.java. Implemente um programa que exiba na saída padrão o preço
total com exatamente duas casas decimais. Siga o formato abaixo.

--
CUPOM FISCAL

--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002 37.50
Chocolate 5.00 003 15.00

302 www.k19.com.br

303 STRING

Refrigerante 3.89 014 54.46
Bolacha de Choco 1.80 058 104.40
--
TOTAL: 211.36
--

Complete o código abaixo. Depois compile e execute novamente.

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 double [] precos = {18.75 , 5.0, 3.89, 1.8};
11 int[] quantidades = {2, 3, 14, 58};
12 double totalDaCompra = 0;
13 for(int i = 0; i < nomes.length; i++) {
14 double totalDoProduto = precos[i] * quantidades[i];
15 if(nomes[i]. length () <= 16) {
16 System.out.format("%-16s %10.2f %03d %10.2f\n", nomes[i],
17 precos[i], quantidades[i], totalDoProduto);
18 } else {
19 System.out.format("%-16s %10.2f %03d %10.2f\n", nomes[i]. substring(0, 16),
20 precos[i], quantidades[i], totalDoProduto);
21 }
22 totalDaCompra += totalDoProduto;
23 }
24 System.out.format("--\n");
25 System.out.format("TOTAL: \n", totalDaCompra);
26 System.out.format("--\n");
27 }
28 }

Código Java 7.40: CumpoFiscal.java

10 Na pasta string, crie um arquivo chamado MostraDados.java. Implemente um programa que exiba
os dados de uma pessoa na saída padrão. O nome deve ser exibido com pelo menos 30 caracteres
e alinhado à esquerda. A idade deve ser exibida com três caracteres (se necessário, zeros devem
ser adicionados à esquerda). O peso deve ser exibido com duas casas decimais. Complete o código
abaixo.

1 class MostraDados {
2 public static void main(String [] args) {
3 String nome = "Jonas Keizo Hirata";
4 int idade = 30;
5 double peso = 49.7345;
6
7 System.out.printf(" | | kg\n", nome , idade , peso);
8 }
9 }

Código Java 7.41: MostraDados.java

11 Compile o arquivo MostraDados.java e execute o programa.

www.facebook.com/k19treinamentos 303

STRING 304

12 Na pasta string, crie um arquivo chamado Calendar.java. Complete o código a seguir e exiba as
datas e horas no seguinte formato “01/01/0001 01:01:01”.

1 class Calendar {
2 public static void main(String [] args) {
3 java.util.Calendar exatamenteAgora = java.util.Calendar.getInstance ();
4 java.util.Calendar fundacaoK19 =
5 new java.util.GregorianCalendar (2010, 7, 27, 10, 32, 15);
6
7 java.text.SimpleDateFormat sdf =
8 new java.text.SimpleDateFormat();
9
10 String exatamenteAgoraFormatada = sdf.format(exatamenteAgora.getTime ());
11 String fundacaoK19Formatada = sdf.format(fundacaoK19.getTime ());
12
13 System.out.println(exatamenteAgoraFormatada);
14 System.out.println(fundacaoK19Formatada);
15 }
16 }

Código Java 7.42: Calendar.java

13 Compile o arquivo Calendar.java e execute o programa.

14 Na pasta string, crie um arquivo chamado GeraParcelas.java. Implemente um programa que
mostre na saída padrão as datas de vencimento das parcelas de um financiamento. A data do ven-
cimento da primeira parcela é 15 de agosto de 2015. Os vencimentos da segunda, terceira e quarta
parcelas serão 30, 60 e 90 dias após o vencimento da primeira, respectivamente. Complete o código
abaixo.

1 class GeraParcelas {
2 public static void main(String [] args) {
3 java.text.SimpleDateFormat sdf = new java.text.SimpleDateFormat();
4
5 java.util.Calendar p = new java.util.GregorianCalendar (2015 , 7 , 15) ;
6 System.out.println(sdf. (p.getTime ()));
7
8 p.add(java.util.Calendar.DAY_OF_MONTH , 30);
9 System.out.println(sdf. (p.getTime ()));
10
11 p.add(java.util.Calendar.DAY_OF_MONTH , 30);
12 System.out.println(sdf. (p.getTime ()));
13
14 p.add(java.util.Calendar.DAY_OF_MONTH , 30);
15 System.out.println(sdf. (p.getTime ()));
16 }
17 }

Código Java 7.43: GeraParcelas.java

15 Compile o arquivo GeraParcelas.java e execute o programa.

7.9 Resumo

1 Para controlar um objeto do tipo String, é necessário utilizar uma referência desse objeto.

304 www.k19.com.br

305 STRING

2 Strings literais são armazenadas no pool de strings.

3 O pool de strings permite que objetos do tipo String sejam reutilizados a fim de diminuir o
consumo de memória.

4 O operador == não verifica se dois objetos do tipo String armazenam a mesma sequência de
caracteres.

5 O método equals da classe String verifica se dois objetos do tipo String armazenam a mesma
sequência de caracteres.

6 O conteúdo de um objeto do tipo String não pode ser alterado.

7 Ao invés de realizar concatenações sucessivas para “montar” uma string, devemos utilizar ob-
jetos do tipo StringBuilder, pois um número excessivo de concatenações pode prejudicar o desem-
penho dos programas em Java.

8 O método format pode ser utilizado para exibir strings formatadas na saída padrão.

9 Datas e horas podem ser formatados com objetos do tipo SimpleDateFormat.

7.10 Prova

1 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 String a = "rafael";
4 a.toUpperCase ();
5 System.out.println(a);
6 }
7 }

O que será exibido ao executar a classe Programa?

a) “a”

b) “rafael”

c) “Rafael”

d) “RAFAEL”

e) Nada será exibido.

www.facebook.com/k19treinamentos 305

STRING 306

2 Considere o seguinte código.

1 class Programa {
2 public static void main(String [] args) {
3 String a = "a";
4 a += "b";
5 a += "c";
6 System.out.println(a);
7 }
8 }

O que será exibido ao executar a classe Programa?

a) “a”

b) “c”

c) “abc”

d) “cba”

e) Nada será exibido.

3 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 String s1 = "K19";
4 String s2 = "K19";
5 }
6 }

Na execução do corpo do método main da classe Programa, quantos objetos do tipo String serão
criados?

a) 0

b) 1

c) 2

d) 3

e) 4

4 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 String a = new String("K19");
4 String b = new String("K19");
5 String c = "K19";
6 System.out.println(a == b);
7 System.out.println(a == c);

306 www.k19.com.br

307 STRING

8 System.out.println(a.intern () == b);
9 System.out.println(a.intern () == c);
10 System.out.println(a == c.intern ());
11 System.out.println(a.equals(b));
12 System.out.println(b.equals(c));
13 }
14 }

Código Java 7.47: Programa.java

Em que ordem as palavras “true” e “false” serão exibidas?

a) true, false, false, true, true, false, true

b) false, true, true, false, false, true, false

c) true, false, true, true, false, true, false

d) false, false, false, true, false, true, true

e) true, true, false, false, true, false, true

5 Considere o código abaixo.

1 class Programa {
2 public static void main(String [] args) {
3 double valor = 1.01010101;
4 System.out.format("%f %.2f %.8f\n", valor , valor , valor);
5 }
6 }

Código Java 7.48: Programa.java

O que seria exibido na saída padrão?

a) 1 1.0 1.01010101

b) 1.010101 1.01 1.01010101

c) 1.01 1 1.0101010

d) 1.010101 1.01 1.0101010

e) 1.01 1.01 1.01

Minha Pontuação Pontuação Mínima: 4 Pontuação Máxima: 5

www.facebook.com/k19treinamentos 307

STRING 308

308 www.k19.com.br

RESPOSTAS

A
P

Ê
N

D
I

C
E

A
A.1 Introdução

Exercício de Fixação 1

Nos sistemas operacionais da família Unix, o comando mkdir (make directory) é utilizado para
criar pastas no terminal, o comando cd (change directory) é utilizado para trocar a pasta atual do ter-
minal e o comando ls (list) é utilizado para listar os arquivos e diretórios da pasta atual do terminal.

~$ mkdir k19

~$ cd k19

~/k19$

Terminal A.1: Criando a pasta de exercícios em ambiente Unix

Nos sistemas operacionais Windows, os comandos correspondentes ao mkdir e ls são md e dir,
respectivamente. O comando cd possui a mesma função em ambientes Unix ou Windows.

C:\Users\K19 > md k19

C:\ Users\K19 > cd k19

C:\ Users\K19\k19>

Terminal A.2: Criando a pasta de exercícios em ambiente Windows

Exercício de Fixação 2

Em ambiente Unix, utilize o comando mkdir para criar a pasta introducao.

~/k19$ mkdir introducao

~/k19$ cd introducao

~/k19/introducao$

Terminal A.3: Criando a pasta dos exercícios desse capítulo em ambiente Unix

No Windows, utilize o comando mkdir para criar a pasta introducao.

www.facebook.com/k19treinamentos 309

RESPOSTAS 310

C:\Users\K19\k19> md introducao

C:\ Users\K19\k19> cd introducao

C:\ Users\K19\k19\introducao >

Terminal A.4: Criando a pasta dos exercícios desse capítulo em ambiente Windows

Exercício de Fixação 3

Utilize um editor de texto para criar o arquivo HelloWorld.java na pasta introducao.

1 class HelloWorld {
2 public static void main(String [] args) {
3 System.out.println("Hello World");
4 }
5 }

Código Java A.1: HelloWorld.java

Exercício de Fixação 4

Utilize o comando javac para compilar o arquivo HelloWorld.java e o comando java para executar
a classe HelloWorld.

~/k19/introducao$ javac HelloWorld.java

~/k19/introducao$ java HelloWorld
Hello World

Terminal A.5: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac HelloWorld.java

C:\Users\K19\k19\introducao > java HelloWorld
Hello World

Terminal A.6: Compilando e executando em ambiente Windows

Exercício de Fixação 5

Utilize um editor de texto para criar o arquivo Argumentos.java na pasta introducao.

1 class Argumentos {
2 public static void main(String [] args) {
3 System.out.println(args [0]);
4 System.out.println(args [1]);
5 }
6 }

Código Java A.2: Argumentos.java

Exercício de Fixação 6

310 www.k19.com.br

311 A.1. INTRODUÇÃO

Utilize o comando javac para compilar o arquivo Argumentos.java e o comando java para executar
a classe Argumentos com os parâmetros “K19” e “Livros”.

~/k19/introducao$ javac Argumentos.java

~/k19/introducao$ java Argumentos K19 Livros
K19
Livros

Terminal A.7: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac Argumentos.java

C:\Users\K19\k19\introducao > java Argumentos K19 Livros
K19
Livros

Terminal A.8: Compilando e executando em ambiente Windows

Exercício de Fixação 7

Utilize um editor de texto para criar o arquivo OiTchau.java na pasta introducao.

1 class Oi {
2 public static void main(String [] args) {
3 System.out.println("Oi");
4 }
5 }
6 class Tchau {
7 public static void main(String [] args) {
8 System.out.println("Tchau");
9 }
10 }

Código Java A.3: OiTchau.java

Exercício de Fixação 8

Utilize o comando javac para compilar o arquivo OiTchau.java e o comando java para executar as
classes Oi e Tchau.

~/k19/introducao$ javac OiTchau.java

~/k19/introducao$ java Oi
Oi

~/k19/introducao$ java Tchau
Tchau

Terminal A.9: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac OiTchau.java

C:\Users\K19\k19\introducao > java Oi
Oi

C:\Users\K19\k19\introducao > java Tchau
Tchau

Terminal A.10: Compilando e executando em ambiente Windows

www.facebook.com/k19treinamentos 311

RESPOSTAS 312

Exercício de Fixação 9

1 class Triangulo {
2 public static void main(String [] args) {
3 System.out.println("*");
4 System.out.println("**");
5 System.out.println("***");
6 System.out.println("****");
7 System.out.println("*****");
8 }
9 }

Código Java A.4: Triangulo.java

Exercício de Fixação 10

~/k19/introducao$ javac Triangulo.java

~/k19/introducao$ java Triangulo
*
**

Terminal A.11: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac Triangulo.java

C:\Users\K19\k19\introducao > java Triangulo
*
**

Terminal A.12: Compilando e executando em ambiente Windows

Exercício de Fixação 11

1 class TrianguloComBarraN {
2 public static void main(String [] args) {
3 System.out.println("*\n**\n***\n****\n*****");
4 }
5 }

Código Java A.5: TrianguloComBarraN.java

Exercício de Fixação 12

312 www.k19.com.br

313 A.1. INTRODUÇÃO

~/k19/introducao$ javac TrianguloComBarraN.java

~/k19/introducao$ java TrianguloComBarraN
*
**

Terminal A.13: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac TrianguloComBarraN.java

C:\Users\K19\k19\introducao > java TrianguloComBarraN
*
**

Terminal A.14: Compilando e executando em ambiente Windows

Exercício de Fixação 13

1 class Cursos {
2 public static void main(String [] args) {
3 System.out.println("K01");
4 System.out.println("\tLógica de Programação");
5 System.out.println("K02");
6 System.out.println("\tDesenvolvimento Web com HTML , CSS e JavaScript");
7 System.out.println("K03");
8 System.out.println("\tSQL e Modelo Relacional");
9 }
10 }

Código Java A.6: Cursos.java

Exercício de Fixação 14

~/k19/introducao$ javac Cursos.java

~/k19/introducao$ java Cursos
K01

Lógica de Programação
K02

Desenvolvimento Web com HTML , CSS e JavaScript
K03

SQL e Modelo Relacional

Terminal A.15: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac Cursos.java

C:\Users\K19\k19\introducao > java Cursos
K01

Lógica de Programação
K02

www.facebook.com/k19treinamentos 313

RESPOSTAS 314

Desenvolvimento Web com HTML , CSS e JavaScript
K03

SQL e Modelo Relacional

Terminal A.16: Compilando e executando em ambiente Windows

Complementar 1

1 class DuasMensagens {
2 public static void main(String [] args) {
3 System.out.println("Hello World 1");
4 System.out.println("Hello World 2");
5 }
6 }

Código Java A.7: DuasMensagens.java

~/k19/introducao$ javac DuasMensagens.java

~/k19/introducao$ java DuasMensagens
Hello World 1
Hello World 2

Terminal A.17: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac DuasMensagens.java

C:\Users\K19\k19\introducao > java DuasMensagens
Hello World 1
Hello World 2

Terminal A.18: Compilando e executando em ambiente Windows

Complementar 2

1 class FrasePreferida {
2 public static void main(String [] args) {
3 System.out.println("Lorem ipsum dolor sit amet");
4 }
5 }

Código Java A.8: FrasePreferida.java

~/k19/introducao$ javac FrasePreferida.java

~/k19/introducao$ java FrasePreferida
Lorem ipsum dolor sit amet

Terminal A.19: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac FrasePreferida.java

C:\Users\K19\k19\introducao > java FrasePreferida
Lorem ipsum dolor sit amet

Terminal A.20: Compilando e executando em ambiente Windows

314 www.k19.com.br

315 A.1. INTRODUÇÃO

Complementar 3

1 class K19 {
2 public static void main(String [] args) {
3 System.out.println("# # # #####");
4 System.out.println("# # ## # #");
5 System.out.println("# # # # # #");
6 System.out.println("### # ######");
7 System.out.println("# # # #");
8 System.out.println("# # # # #");
9 System.out.println("# # ##### #####");
10 }
11 }

Código Java A.9: K19.java

~/k19/introducao$ javac K19.java

~/k19/introducao$ java K19

Terminal A.21: Compilando e executando em ambiente Unix

C:\Users\K19\k19\introducao > javac K19.java

C:\Users\K19\k19\introducao > java K19

Terminal A.22: Compilando e executando em ambiente Windows

Questão 1

Resposta: d.

a) Apesar de alguns dados serem guardados nos registradores do processador, armazenar dados
não é a função principal dos processadores.

b) Os dados armazenados no disco rígido são persistentes. Eles não são removidos quando o
computador é desligado.

c) O acesso aos dados dos registradores é mais rápido do que o acesso aos dados da memória
RAM.

d) Realmente, na maioria dos casos, os computadores possuem discos rígidos com maior capaci-
dade de armazenamento do que a memória RAM.

e) A execução das instruções de um programa é responsabilidade dos processadores.

Questão 2

Resposta: d.

www.facebook.com/k19treinamentos 315

RESPOSTAS 316

a) Em qualquer rede de computadores, a transmissão de dados entre computadores é algo co-
mum.

b) A porta Ethernet é utilizada para conectar um computador a uma rede de computadores.

c) A comunicação entre computadores e dispositivos periféricos pode ser realizada através de
diversas portas de tipos diferentes.

d) Mouses, teclados, celulares, microfones, câmeras, entre diversos outros dispositivos podem
ser conectados aos computadores através das portas USB.

e) A porta HDMI é utilizada para transmissão de vídeo e áudio.

Questão 3

Resposta: b

Para obter a representação binária de um número em formato decimal, podemos aplicar divisões
sucessivas por 2 até que o quociente seja igual a 0. A sequência invertida dos restos dessas divisões
define a representação binária do número. A Tabela A.1 mostra o processo para obter a representação
binária do número 19 (10011).

Divisão Quociente Resto
19/2 9 1
9/2 4 1
4/2 2 0
2/2 1 0
1/2 0 1

Tabela A.1: Obtendo a representação binária do número 19

Questão 4

Resposta: c

Para obter a representação decimal de um número em formato binário, podemos realizar o se-
guinte procedimento:

1. Associar a cada algarismo do número em formato binário uma potência de 2. O último alga-
rismo deve ser associado a 20, o penúltimo deve ser associado a 21 e assim por diante até o
primeiro algarismo.

2. Somar os produtos obtidos pela multiplicação de cada algarismo pela potência de 2 corres-
pondente.

Utilizando o procedimento descrito acima, o número em formato binário 101101 é o resultado
da seguinte expressão:

(1×25)+ (0×24)+ (1×23)+ (1×22)+ (0×21)+ (1×20) = 32+8+4+1 = 45

316 www.k19.com.br

317 A.1. INTRODUÇÃO

Questão 5

Resposta: e

a) 01000101 é o código do caractere “E”.

b) 01000100 é o código do caractere “D”.

c) 01000011 é o código do caractere “C”.

d) 01000001 é o código do caractere “A”.

e) 01001011 é o código do caractere “K”.

Questão 6

Resposta: e

Sabendo que 1 KiB equivale a 1024 bytes e 1 byte equivale a 8 bits, para calcular o espaço ocupado
por 19 KiB, basta calcular a expressão 19×1024×8. O resultado obtido é 155648.

Questão 7

Resposta: c

a) Atualmente, x86 e x86_64 são as principais arquiteturas de processador.

b) A arquitetura de um processador define quais comandos ele aceita e também o formato desses
comandos.

c) Alguns comandos até podem ser iguais para processadores de arquiteturas diferentes, mas não
todos.

d) Realmente, as arquiteturas dos processadores atuais definem instruções (comandos) em biná-
rio.

e) O código executado por um processador é escrito em linguagem de máquina.

Questão 8

Resposta: a

Um programa não é um computador, nem uma linguagem de programação e nem uma sequên-
cia de bits aleatórios.

www.facebook.com/k19treinamentos 317

RESPOSTAS 318

Questão 9

Resposta: a

Java não é uma linguagem de máquina, nem um sistema operacional e nem um programa.

Questão 10

Resposta: e

a) Quem traduz código de máquina para código fonte são as ferramentas de engenharia reversa.

b) Quem executa código de máquina são os processadores.

c) Código fonte não é executado.

d) Os dados do computador são armazenados nos discos rígidos, na memória RAM ou nos regis-
tradores do processador.

e) A principal função dos compiladores é traduzir código fonte para código de máquina.

Questão 11

Resposta: c

Um sistema operacional não é uma linguagem de máquina, nem uma linguagem de programa-
ção, nem um computador especial e nem um tipo de processador.

Questão 12

Resposta: a

a) Realmente, a vantagem das linguagens de programação que utilizam máquinas virtuais é a
possibilidade de criação de programas “portáveis”.

b) As linguagens de programação que utilizam máquinas virtuais podem ou não possuir mais
comandos do que as outras linguagens de programação.

c) Normalmente, mas não sempre, os programas desenvolvidos com linguagens de programa-
ção que utilizam máquinas virtuais são mais lentos do que os programas desenvolvidos com
linguagens de programação que não utilizam máquinas virtuais.

d) O propósito das linguagens de programação que utilizam máquinas virtuais é justamente se
tornar independente dos sistemas operacionais.

318 www.k19.com.br

319 A.1. INTRODUÇÃO

e) Normalmente, mas não sempre, os programas desenvolvidos com linguagens de programação
que utilizam máquinas virtuais consomem mais memória do que os programas desenvolvidos
com linguagens de programação que não utilizam máquinas virtuais.

Questão 13

Resposta: b

Os arquivos com código fonte Java devem possuir a extensão .java com todas as letras minúscu-
las.

Questão 14

Resposta: b

Questão 15

Resposta: c

Questão 16

Resposta: b

Questão 17

Resposta: d

Como três classes foram definidas no arquivo Programa.java, três arquivos com a extensão “.class”
serão gerados na compilação.

Questão 18

Resposta: a

a) Esta resposta está correta.

b) Há linguagens case sensitives que são dependentes de sistema operacional.

c) Nem toda linguagem case sensitive é orientada a objetos.

d) Ser case sensitive não implica ter mais comandos.

e) Ser case sensitive não implica ter menos comandos.

www.facebook.com/k19treinamentos 319

RESPOSTAS 320

Questão 19

Resposta: c

Questão 20

Resposta: a

Questão 21

Resposta: e

a) O método main deve ser void.

b) O nome do método main não pode possuir letras maiúsculas.

c) O método main deve ser public.

d) O método main deve ser public.

e) Essa alternativa declara corretamente o método main.

Questão 22

Resposta: b

a) O identificador System foi escrito com a primeira letra minúscula.

b) Essa alternativa está correta.

c) Esse trecho de código exibe a mensagem “K19” em C# não em Java.

d) O identificador System foi escrito com a primeira letra minúscula.

e) O método print não pode ser chamado dessa forma.

Questão 23

Resposta: a

Questão 24

320 www.k19.com.br

321 A.1. INTRODUÇÃO

Resposta: c

Para inserir comentários de linha, utilizamos o marcador “//”. Para inserir comentários de bloco,
utilizamos os marcadores “/*” e “*/”.

Questão 25

Resposta: c

O comando java e o nome da classe não são considerados argumentos. A indexação dos argu-
mentos inicia com 0.

Questão 26

Resposta: d

a) O compilador Java não executa métodos.

b) Podemos definir classes sem o método main.

c) Somente as classes que possuem o método main podem ser executadas.

d) Essa alternativa está correta.

e) Ao executar uma classe sem o método main, um erro de execução é gerado.

Questão 27

Resposta: a

O corpo da classe Programa não foi fechado corretamente com “}”.

Questão 28

Resposta: e

Como Java é uma linguagem case sensitive, para corrigir o código é necessário trocar system por
System.

Questão 29

Resposta: e

As instruções dentro do corpo do método main devem ser finalizadas com “;”.

www.facebook.com/k19treinamentos 321

RESPOSTAS 322

Questão 30

Resposta: a

O nome do método main deve ser definido com todas as letras minúsculas.

Questão 31

Resposta: a

O nome do arquivo está errado. O nome correto é Programa.java e não Program.java.

Questão 32

Resposta: e

As aspas devem ser fechadas corretamente. Caso contrário, ocorre um erro de compilação.

Questão 33

Resposta: d

Na execução, a extensão .class não deve ser utilizada.

A.2 Variáveis

Exercício de Fixação 1

~/k19$ mkdir variaveis

~/k19$ cd variaveis

~/k19/variaveis$

Terminal A.23: Criando a pasta variaveis em ambiente Unix

C:\Users\K19\k19> md variaveis

C:\ Users\K19\k19> cd variaveis

C:\ Users\K19\k19\variaveis >

Terminal A.24: Criando a pasta variaveis em ambiente Windows

322 www.k19.com.br

323 A.2. VARIÁVEIS

Exercício de Fixação 2

1 class ExibeIdade {
2 public static void main(String [] args) {
3 int idade;
4
5 idade = 27;
6
7 System.out.println(idade);
8 }
9 }

Código Java A.10: ExibeIdade.java

Exercício de Fixação 3

~/k19/variaveis$ javac ExibeIdade.java

~/k19/variaveis$ java ExibeIdade
27

Terminal A.25: Compilando e executando em ambiente Unix

C:\Users\K19\k19\variaveis > javac ExibeIdade.java

C:\Users\K19\k19\variaveis > java ExibeIdade
27

Terminal A.26: Compilando e executando em ambiente Windows

Exercício de Fixação 4

1 class ExibeNumeroAleatorio {
2 public static void main(String [] args) {
3 double numeroAleatorio;
4
5 numeroAleatorio = Math.random () * 100;
6
7 System.out.println(numeroAleatorio);
8 }
9 }

Código Java A.11: ExibeNumeroAleatorio.java

Exercício de Fixação 5

www.facebook.com/k19treinamentos 323

RESPOSTAS 324

~/k19/variaveis$ javac ExibeNumeroAleatorio.java

~/k19/variaveis$ java ExibeNumeroAleatorio
19.775172204803429

Terminal A.27: Compilando e executando em ambiente Unix

C:\Users\K19\k19\variaveis > javac ExibeNumeroAleatorio.java

C:\Users\K19\k19\variaveis > java ExibeNumeroAleatorio
19.775172204803429

Terminal A.28: Compilando e executando em ambiente Windows

Exercício de Fixação 6

1 class ExibeNome {
2 public static void main(String [] args) {
3 String nome;
4
5 nome = "k19";
6
7 System.out.println(nome);
8 }
9 }

Código Java A.12: ExibeNome.java

Exercício de Fixação 7

~/k19/variaveis$ javac ExibeNome.java

~/k19/variaveis$ java ExibeNome
k19

Terminal A.29: Compilando e executando em ambiente Unix

C:\Users\K19\k19\variaveis > javac ExibeNome.java

C:\Users\K19\k19\variaveis > java ExibeNome
k19

Terminal A.30: Compilando e executando em ambiente Windows

Exercício de Fixação 8

1 class ExibeValores {
2 public static void main(String [] args) {
3 byte b = 19;
4 short s = 1571;

324 www.k19.com.br

325 A.2. VARIÁVEIS

5 int i = 100000;
6 long l = 2147483648L;
7 float f = 3.14F;
8 double d = 3.141592653589793;
9 boolean x = true;
10 char c = ’K’;
11
12 System.out.println(b);
13 System.out.println(s);
14 System.out.println(i);
15 System.out.println(l);
16 System.out.println(f);
17 System.out.println(d);
18 System.out.println(x);
19 System.out.println(c);
20 }
21 }

Código Java A.13: ExibeValores.java

Exercício de Fixação 9

~/k19/variaveis$ javac ExibeValores.java

~/k19/variaveis$ java ExibeValores
19
1571
100000
2147483648
3.14
3.141592653589793
true
K

Terminal A.31: Compilando e executando em ambiente Unix

C:\Users\K19\k19\variaveis > javac ExibeValores.java

C:\Users\K19\k19\variaveis > java ExibeValores
19
1571
100000
2147483648
3.14
3.141592653589793
true
K

Terminal A.32: Compilando e executando em ambiente Windows

Exercício de Fixação 10

1 class CopiaValores {
2 public static void main(String [] args) {
3 float numero = 3.14F;
4 float numeroCopia = numero;
5
6 System.out.println(numero);
7 System.out.println(numeroCopia);
8 }

www.facebook.com/k19treinamentos 325

RESPOSTAS 326

9 }

Código Java A.14: CopiaValores.java

Exercício de Fixação 11

~/k19/variaveis$ javac CopiaValores.java

~/k19/variaveis$ java CopiaValores
3.14
3.14

Terminal A.33: Compilando e executando em ambiente Unix

C:\Users\K19\k19\variaveis > javac CopiaValores.java

C:\Users\K19\k19\variaveis > java CopiaValores
3.14
3.14

Terminal A.34: Compilando e executando em ambiente Windows

Exercício de Fixação 12

1 class ValorNull {
2 public static void main(String [] args) {
3 Double numero = 3.14;
4 System.out.println(numero);
5
6 numero = null;
7 System.out.println(numero);
8 }
9 }

Código Java A.15: ValorNull.java

Exercício de Fixação 13

~/k19/variaveis$ javac ValorNull.java

~/k19/variaveis$ java ValorNull
3.14
null

Terminal A.35: Compilando e executando em ambiente Unix

C:\Users\K19\k19\variaveis > javac ValorNull.java

C:\Users\K19\k19\variaveis > java ValorNull
3.14
null

326 www.k19.com.br

327 A.2. VARIÁVEIS

Terminal A.36: Compilando e executando em ambiente Windows

Complementar 1

Em Java:

1. “Bom dia” -> String

2. 3 -> byte, short, int, long, float ou double

3. 235.13 -> double

4. true -> boolean

5. -135 -> short, int, long, float ou double

6. 256.23F -> float ou double

7. ‘A’ -> char

8. 6463275245745L -> long, float ou double

Complementar 2

1 class TestaVariavelPeso {
2 public static void main(String [] args) {
3 double peso;
4
5 peso = 88.20;
6
7 System.out.println(peso);
8 }
9 }

Código Java A.16: TestaVariavelPeso.java

Compile o arquivo TestaVariavelPeso.java e execute o programa.

~/k19/variaveis$ javac TestaVariavelPeso.java

~/k19/variaveis$ java TestaVariavelPeso
88.20

Terminal A.37: Compilando e executando em ambiente Unix

C:\Users\K19\k19\variaveis > javac TestaVariavelPeso.java

C:\Users\K19\k19\variaveis > java TestaVariavelPeso
88.20

Terminal A.38: Compilando e executando em ambiente Windows

www.facebook.com/k19treinamentos 327

RESPOSTAS 328

Complementar 3

1 class TestaTiposPrimitivos {
2 public static void main(String [] args) {
3 byte b = 1;
4 short s = 2;
5 int i = 3;
6 long l = 4;
7 float f = 5.5F;
8 double d = 6.6;
9 char c = ’K’;
10 boolean v = true;
11
12 System.out.println(b);
13 System.out.println(s);
14 System.out.println(i);
15 System.out.println(l);
16 System.out.println(f);
17 System.out.println(d);
18 System.out.println(c);
19 System.out.println(v);
20 }
21 }

Código Java A.17: TestaTiposPrimitivos.java

Compile o arquivo TestaTiposPrimitivos.java e execute o programa.

~/k19/variaveis$ javac TestaTiposPrimitivos.java

~/k19/variaveis$ java TestaTiposPrimitivos
1
2
3
4
5.5
6.6
K
true

Terminal A.39: Compilando e executando em ambiente Unix

C:\Users\K19\k19\variaveis > javac TestaTiposPrimitivos.java

C:\Users\K19\k19\variaveis > java TestaTiposPrimitivos
1
2
3
4
5.5
6.6
K
true

Terminal A.40: Compilando e executando em ambiente Windows

Complementar 4

328 www.k19.com.br

329 A.2. VARIÁVEIS

1 class SistemaMercadorias {
2 public static void main(String [] args) {
3 int numeroDoPedido = 1523;
4 int codigoDoProduto = 845732;
5 short quantidade = 200;
6 double valorTotalDaCompra = 62373.5;
7
8 System.out.println(numeroDoPedido);
9 System.out.println(codigoDoProduto);
10 System.out.println(quantidade);
11 System.out.println(valorTotalDaCompra);
12 }
13 }

Código Java A.18: SistemaMercadorias.java

Desafio 1

Se estivéssemos trabalhando com uma loja bem pequena, com um baixo volume de vendas,
assim como uma pequena variedade de produtos, poderíamos alterar as variáveis numeroDoPedido e
codigoDoProduto para o tipo short. Dessa forma reduziríamos em 50% a quantidade de memória ne-
cessária para armazenarmos essas variáveis.

Caso estivéssemos trabalhando com uma grande rede de lojas, o tipo mais apropriado seria long.
Consequentemente estaríamos aumentando em 50% a quantidade de memória necessária para ar-
mazenarmos essas variáveis.

Questão 1

Resposta d

Os dados manipulados por um programa devem ser armazenados em variáveis.

Questão 2

Resposta e

a) Toda variável possui nome (identificador).

b) O tipo de uma variável não determina onde ela está localizada.

c) Em Java as variáveis são tipadas.

d) Não há restrição quanto a quantidade de variáveis de um determinado tipo.

e) Esta alternativa está correta.

Questão 3

www.facebook.com/k19treinamentos 329

RESPOSTAS 330

Resposta c

Declarar uma variável significa definir o nome e o tipo dessa variável.

Inicializar uma variável significa atribuir a ela o seu primeiro valor.

Questão 4

Resposta d

a) Duas variáveis podem ser inicializadas com o mesmo valor.

b) Para utilizar uma variável é necessário declará-la.

c) Não é permitido declarar duas o mais variáveis com o mesmo nome no mesmo bloco.

d) Está alternativa está correta.

e) Apesar de não fazer sentido, podemos declarar uma variável e não inicializá-la.

Questão 5

Resposta a

As variáveis locais devem ser explicitamente inicializadas antes de utilizadas. Caso contrário um
erro de compilação é gerado.

Questão 6

Resposta c

a) O tipo byte armazena números inteiros.

b) O tipo int armazena números inteiros.

c) Ambos são usados para armazenar números reais.

d) real não é um tipo primitivo em Java.

e) single não é um tipo primitivo em Java.

Questão 7

Resposta c

330 www.k19.com.br

331 A.2. VARIÁVEIS

a) O tipo byte armazena apenas números inteiros entre -128 e 127.

b) O tipo short armazena apenas números inteiros entre -32768 e 32767.

c) O tipo int armazena apenas números inteiros entre -2147483648 e 2147483647.

d) O tipo int é capaz de armazenar números inteiros entre 0 e 65535, mas também é capaz de
armazenar outros.

e) O tipo int é capaz de armazenar números inteiros entre -1000 e 1000, mas também é capaz de
armazenar outros.

Questão 8

Resposta e

a) O tipo não primitivo correspondente ao tipo primitivo int é o Integer.

b) O tipo não primitivo correspondente ao tipo primitivo char é o Character.

c) O tipo não primitivo correspondente ao tipo primitivo boolean é o Boolean.

d) O tipo não primitivo correspondente ao tipo primitivo double é o Double.

e) Está alternativa está correta.

Questão 9

Resposta b

Como o tipo String é um tipo não primitivo, ele aceita o valor null.

Questão 10

Resposta a

Caracteres literais devem ser definidos dentro de aspas simples e apenas um caractere pode ser
definido.

Questão 11

Resposta e

Questão 12

Resposta e

www.facebook.com/k19treinamentos 331

RESPOSTAS 332

Questão 13

Resposta b

Questão 14

Resposta a

a) Esta alternativa está correta.

b) Variáveis do tipo boolean podem ser final.

c) O conteúdo de uma variável final pode ser acessado.

d) O conteúdo de uma variável final pode ser exibido na tela.

e) As variáveis final locais não são inicializadas automaticamente.

Questão 15

Resposta a

De acordo com a convenção de nomenclatura da linguagem Java, apenas a primeira letra de
cada palavra que forma o nome de uma variável deve ser maiúscula, com exceção da primeira letra
da primeira palavra.

Questão 16

Resposta c

a) Os nomes das variáveis não podem começar com dígitos.

b) Os nomes das variáveis não podem ser iguais a palavras chaves.

c) Esta alternativa está correta.

d) Os nomes das variáveis não podem possuir o caractere “.” (ponto).

e) Os nomes das variáveis não podem possuir espaços.

Questão 17

Resposta e

332 www.k19.com.br

333 A.3. OPERADORES

Quando duas ou mais variáveis com o mesmo nome são declaradas em um mesmo bloco, ocorre
erro de compilação.

Questão 18

Resposta b

Toda variável local deve ser explicitamente inicializada antes de ser utilizada. Caso contrário,
ocorre erro de compilação.

Questão 19

Resposta e

Caracteres literais devem ser definidos dentro de aspas simples.

Questão 20

Resposta d

O separador de casas decimais é o ponto.

Questão 21

Resposta b

O tipo primitivo int aceita apenas valores numéricos inteiros.

A.3 Operadores

Exercício de Fixação 1

~/k19$ mkdir operadores

~/k19$ cd operadores

~/k19/operadores$

Terminal A.41: Criando a pasta operadores em ambiente Unix

C:\Users\K19\k19> md operadores

C:\ Users\K19\k19> cd operadores

C:\ Users\K19\k19\operadores >

www.facebook.com/k19treinamentos 333

RESPOSTAS 334

Terminal A.42: Criando a pasta operadores em ambiente Windows

Exercício de Fixação 2

1 class ConversaoPrimitivos {
2 public static void main(String [] args) {
3 int a = 10;
4 long b = a;
5 int c = (int)b;
6 float d = b;
7 short e = (short)a;
8 double f = d;
9 Long g = b;
10 long h = g;
11
12 System.out.println(a);
13 System.out.println(b);
14 System.out.println(c);
15 System.out.println(d);
16 System.out.println(e);
17 System.out.println(f);
18 System.out.println(g);
19 System.out.println(h);
20 }
21 }

Código Java A.19: ConversaoPrimitivos.java

Exercício de Fixação 3

~/k19/operadores$ javac ConversaoPrimitivos.java

~/k19/operadores$ java ConversaoPrimitivos
10
10
10
10.0
10
10.0
10
10

Terminal A.43: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac ConversaoPrimitivos.java

C:\Users\K19\k19\operadores > java ConversaoPrimitivos
10
10
10
10.0
10
10.0
10
10

Terminal A.44: Compilando e executando em ambiente Windows

334 www.k19.com.br

335 A.3. OPERADORES

Exercício de Fixação 4

1 class Casting {
2 public static void main(String [] args) {
3 long numero1 = 2147483648L;
4
5 int numero2 = (int)numero1;
6
7 System.out.println(numero1);
8 System.out.println(numero2);
9 }
10 }

Código Java A.20: Casting.java

Exercício de Fixação 5

~/k19/operadores$ javac Casting.java

~/k19/operadores$ java Casting
2147483648
-2147483648

Terminal A.45: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac Casting.java

C:\Users\K19\k19\operadores > java Casting
2147483648
-2147483648

Terminal A.46: Compilando e executando em ambiente Windows

Exercício de Fixação 6

1 class Conversao {
2 public static void main(String [] args) {
3 String texto = "19.09";
4
5 double numero = Double.parseDouble(texto);
6
7 System.out.println(numero);
8 }
9 }

Código Java A.21: Conversao.java

Exercício de Fixação 7

www.facebook.com/k19treinamentos 335

RESPOSTAS 336

~/k19/operadores$ javac Conversao.java

~/k19/operadores$ java Conversao
19.09

Terminal A.47: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac Conversao.java

C:\Users\K19\k19\operadores > java Conversao
19.09

Terminal A.48: Compilando e executando em ambiente Windows

Exercício de Fixação 8

1 class OperadoresAritmeticos {
2 public static void main(String [] args) {
3 int a = 10 + 1;
4 int b = 10 - 2;
5 int c = 20 * 3;
6 int d = 25 / 5;
7 int e = 10 % 4;
8
9 System.out.println(a);
10 System.out.println(b);
11 System.out.println(c);
12 System.out.println(d);
13 System.out.println(e);
14 }
15 }

Código Java A.22: OperadoresAritmeticos.java

Exercício de Fixação 9

~/k19/operadores$ javac OperadoresAritmeticos.java

~/k19/operadores$ java OperadoresAritmeticos
11
8
60
5
2

Terminal A.49: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac OperadoresAritmeticos.java

C:\Users\K19\k19\operadores > java OperadoresAritmeticos
11
8
60
5
2

Terminal A.50: Compilando e executando em ambiente Windows

336 www.k19.com.br

337 A.3. OPERADORES

Exercício de Fixação 10

1 class TiposDeResultado {
2 public static void main(String [] args) {
3 byte a = 1;
4 short b = 2;
5 double c = 3.14;
6
7 int d = a + b;
8 double e = b + c;
9
10 System.out.println(d);
11 System.out.println(e);
12 }
13 }

Código Java A.23: TiposDeResultado.java

Exercício de Fixação 11

~/k19/operadores$ javac TiposDeResultado.java

~/k19/operadores$ java TiposDeResultado
3
5.140000000000001

Terminal A.51: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac TiposDeResultado.java

C:\Users\K19\k19\operadores > java TiposDeResultado
3
5.140000000000001

Terminal A.52: Compilando e executando em ambiente Windows

Exercício de Fixação 12

1 class DivisaoInteiraReal {
2 public static void main(String [] args) {
3 int a = 5;
4 int b = 2;
5
6 System.out.println(a / b);
7 System.out.println ((double)a / b);
8 System.out.println(a / (double)b);
9 System.out.println ((double)a / (double)b);
10 System.out.println ((double)(a / b));
11 }
12 }

www.facebook.com/k19treinamentos 337

RESPOSTAS 338

Código Java A.24: DivisaoInteiraReal.java

Exercício de Fixação 13

~/k19/operadores$ javac DivisaoInteiraReal.java

~/k19/operadores$ java DivisaoInteiraReal
2
2.5
2.5
2.5
2.0

Terminal A.53: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac DivisaoInteiraReal.java

C:\Users\K19\k19\operadores > java DivisaoInteiraReal
2
2.5
2.5
2.5
2.0

Terminal A.54: Compilando e executando em ambiente Windows

Exercício de Fixação 14

1 class OverflowUnderflow {
2 public static void main(String [] args) {
3 System.out.println (2147483647 + 1);
4 System.out.println (-2147483648 - 1);
5 }
6 }

Código Java A.25: OverflowUnderflow.java

Exercício de Fixação 15

~/k19/operadores$ javac OverflowUnderflow.java

~/k19/operadores$ java OverflowUnderflow
-2147483648
2147483647

Terminal A.55: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac OverflowUnderflow.java

C:\Users\K19\k19\operadores > java OverflowUnderflow

338 www.k19.com.br

339 A.3. OPERADORES

-2147483648
2147483647

Terminal A.56: Compilando e executando em ambiente Windows

Exercício de Fixação 16

1 class Concatenacao {
2 public static void main(String [] args) {
3 System.out.println("Java" + 1 + 2 + 3);
4 System.out.println("Java" + (1 + 2 + 3));
5 System.out.println("" + 1 + 2 + 3 + "Java");
6 System.out.println (1 + 2 + 3 + "Java");
7 }
8 }

Código Java A.26: Concatenacao.java

Exercício de Fixação 17

~/k19/operadores$ javac Concatenacao.java

~/k19/operadores$ java Concatenacao
Java123
Java6
123 Java
6Java

Terminal A.57: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac Concatenacao.java

C:\Users\K19\k19\operadores > java Concatenacao
Java123
Java6
123 Java
6Java

Terminal A.58: Compilando e executando em ambiente Windows

Exercício de Fixação 18

1 class OperadoresDeAtribuicao {
2 public static void main(String [] args) {
3 int a = 1;
4 System.out.println(a);
5
6 a += 2;
7 System.out.println(a);
8
9 a -= 1;
10 System.out.println(a);

www.facebook.com/k19treinamentos 339

RESPOSTAS 340

11
12 a *= 3;
13 System.out.println(a);
14
15 a /= 2;
16 System.out.println(a);
17
18 a %= 2;
19 System.out.println(a);
20
21 a++;
22 System.out.println(a);
23
24 a--;
25 System.out.println(a);
26 }
27 }

Código Java A.27: OperadoresDeAtribuicao.java

Exercício de Fixação 19

~/k19/operadores$ javac OperadoresDeAtribuicao.java

~/k19/operadores$ java OperadoresDeAtribuicao
1
3
2
6
3
1
2
1

Terminal A.59: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac OperadoresDeAtribuicao.java

C:\Users\K19\k19\operadores > java OperadoresDeAtribuicao
1
3
2
6
3
1
2
1

Terminal A.60: Compilando e executando em ambiente Windows

Exercício de Fixação 20

1 class OperadoresRelacionais {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5
6 System.out.println(a > b);
7 System.out.println(a >= b);
8 System.out.println(a < b);

340 www.k19.com.br

341 A.3. OPERADORES

9 System.out.println(a <= b);
10 System.out.println(a == b);
11 System.out.println(a != b);
12 }
13 }

Código Java A.28: OperadoresRelacionais.java

Exercício de Fixação 21

~/k19/operadores$ javac OperadoresRelacionais.java

~/k19/operadores$ java OperadoresRelacionais
false
false
true
true
false
true

Terminal A.61: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac OperadoresRelacionais.java

C:\Users\K19\k19\operadores > java OperadoresRelacionais
false
false
true
true
false
true

Terminal A.62: Compilando e executando em ambiente Windows

Exercício de Fixação 22

1 class OperadoresLogicos {
2 public static void main(String [] args) {
3 int a = 1;
4 int b = 2;
5 int c = 3;
6 int d = 4;
7
8 System.out.println(a > b | c < d);
9 System.out.println(a > b || c < d);
10 System.out.println(a > b & c < d);
11 System.out.println(a > b && c < d);
12 System.out.println(a > b ^ c < d);
13 }
14 }

Código Java A.29: OperadoresLogicos.java

Exercício de Fixação 23

www.facebook.com/k19treinamentos 341

RESPOSTAS 342

~/k19/operadores$ javac OperadoresLogicos.java

~/k19/operadores$ java OperadoresLogicos
true
true
false
false
true

Terminal A.63: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac OperadoresLogicos.java

C:\Users\K19\k19\operadores > java OperadoresLogicos
true
true
false
false
true

Terminal A.64: Compilando e executando em ambiente Windows

Exercício de Fixação 24

1 class OperadorTernario {
2 public static void main(String [] args) {
3 int a = (int)(Math.random () * 100);
4 int b = (int)(Math.random () * 100);
5
6 System.out.println(a < b ? "a < b" : "a >= b");
7 }
8 }

Código Java A.30: OperadorTernario.java

Exercício de Fixação 25

~/k19/operadores$ javac OperadorTernario.java

~/k19/operadores$ java OperadorTernario
a < b

~/k19/operadores$ java OperadorTernario
a < b

~/k19/operadores$ java OperadorTernario
a >= b

Terminal A.65: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac OperadorTernario.java

C:\Users\K19\k19\operadores > java OperadorTernario
a < b

C:\Users\K19\k19\operadores > java OperadorTernario
a < b

342 www.k19.com.br

343 A.3. OPERADORES

C:\Users\K19\k19\operadores > java OperadorTernario
a >= b

Terminal A.66: Compilando e executando em ambiente Windows

Exercício de Fixação 26

1 class OperadorNegacao {
2 public static void main(String [] args) {
3 int a = 10;
4 int b = 20;
5
6 System.out.println(a < b);
7 System.out.println (!(a < b));
8 }
9 }

Código Java A.31: OperadorNegacao.java

Exercício de Fixação 27

~/k19/operadores$ javac OperadorNegacao.java

~/k19/operadores$ java OperadorNegacao
true
false

Terminal A.67: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac OperadorNegacao.java

C:\Users\K19\k19\operadores > java OperadorNegacao
true
false

Terminal A.68: Compilando e executando em ambiente Windows

Exercício de Fixação 28

1 class PrePosIncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 1;
4
5 System.out.println(a++);
6 System.out.println (++a);
7 System.out.println(a--);
8 System.out.println(--a);
9 }
10 }

Código Java A.32: PrePosIncrementoDecremento.java

www.facebook.com/k19treinamentos 343

RESPOSTAS 344

Exercício de Fixação 29

~/k19/operadores$ javac PrePosIncrementoDecremento.java

~/k19/operadores$ java PrePosIncrementoDecremento
1
3
3
1

Terminal A.69: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac PrePosIncrementoDecremento.java

C:\Users\K19\k19\operadores > java PrePosIncrementoDecremento
1
3
3
1

Terminal A.70: Compilando e executando em ambiente Windows

Exercício de Fixação 30

1 class OperacoesString {
2 public static void main(String [] args) {
3 String s = "Rafael Cosentino";
4
5 System.out.println(s.charAt (7));
6
7 System.out.println(s.contains("Cosentino"));
8 System.out.println(s.contains("Hirata"));
9
10 System.out.println(s.endsWith("Cosentino"));
11 System.out.println(s.endsWith("Hirata"));
12
13 System.out.println(s.startsWith("Rafael"));
14 System.out.println(s.startsWith("Marcelo"));
15
16 s = s.replaceAll("Rafael", "Jonas");
17 System.out.println(s);
18
19 System.out.println(s.substring (6));
20 System.out.println(s.substring(0, 5));
21
22 s = s.toUpperCase ();
23 System.out.println(s);
24
25 s = s.toLowerCase ();
26 System.out.println(s);
27
28 s = " K19 Treinamentos ";
29 System.out.println(s.trim());
30 }
31 }

Código Java A.33: OperacoesString.java

344 www.k19.com.br

345 A.3. OPERADORES

Exercício de Fixação 31

~/k19/operadores$ javac OperacoesString.java

~/k19/operadores$ java OperacoesString
C
true
false
true
false
true
false
Jonas Cosentino
Cosentino
Jonas
JONAS COSENTINO
jonas cosentino
K19 Treinamentos

Terminal A.71: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac OperacoesString.java

C:\Users\K19\k19\operadores > java OperacoesString
C
true
false
true
false
true
false
Jonas Cosentino
Cosentino
Jonas
JONAS COSENTINO
jonas cosentino
K19 Treinamentos

Terminal A.72: Compilando e executando em ambiente Windows

Complementar 1

1 class TestaConversaoDouble {
2 public static void main(String [] args) {
3 String texto = "1571.11";
4
5 double numero = Double.parseDouble(texto);
6
7 System.out.println(numero);
8 }
9 }

Código Java A.34: TestaConversaoDouble.java

Compile o arquivo TestaConversaoDouble.java e execute o programa.

~/k19/operadores$ javac TestaConversaoDouble.java

~/k19/operadores$ java TestaConversaoDouble
1571.11

www.facebook.com/k19treinamentos 345

RESPOSTAS 346

Terminal A.73: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac TestaConversaoDouble.java

C:\Users\K19\k19\operadores > java TestaConversaoDouble
1571.11

Terminal A.74: Compilando e executando em ambiente Windows

Complementar 2

1 class UseOperadoresAritmeticos {
2 public static void main(String [] args) {
3 int x = 3 * 8;
4 int y = 7 + 3;
5 int z = 4 / 3;
6 int q = 8 % 2;
7 int w = 9 - 4;
8
9 System.out.println(x);
10 System.out.println(y);
11 System.out.println(z);
12 System.out.println(q);
13 System.out.println(w);
14 }
15 }

Código Java A.35: UseOperadoresAritmeticos.java

Compile e execute a classe UseOperadoresAritmeticos.

~/k19/operadores$ javac UseOperadoresAritmeticos.java

~/k19/operadores$ java UseOperadoresAritmeticos
24
10
1
0
5

Terminal A.75: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac UseOperadoresAritmeticos.java

C:\Users\K19\k19\operadores > java UseOperadoresAritmeticos
24
10
1
0
5

Terminal A.76: Compilando e executando em ambiente Windows

Complementar 3

346 www.k19.com.br

347 A.3. OPERADORES

1 class IdadeMedia {
2 public static void main(String [] args) {
3 double idadeDoRafael = 29;
4 double idadeDoJonas = 31;
5 double idadeDoMarcelo = 29;
6
7 double idadeMedia = (idadeDoRafael + idadeDoJonas + idadeDoMarcelo)/3;
8
9 System.out.println("Idade Média: " + idadeMedia);
10 }
11 }

Código Java A.36: IdadeMedia.java

Compile e execute a classe IdadeMedia.

~/k19/operadores$ javac IdadeMedia.java

~/k19/operadores$ java IdadeMedia
Idade Média: 29.666666666666668

Terminal A.77: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac IdadeMedia.java

C:\Users\K19\k19\operadores > java IdadeMedia
Idade Média: 29.666666666666668

Terminal A.78: Compilando e executando em ambiente Windows

Complementar 4

1 class UseDivisaoCasting {
2 public static void main(String [] args) {
3 int x = 41;
4 int y = 2;
5
6 System.out.println(x / y);
7 System.out.println ((double)x / y);
8 }
9 }

Código Java A.37: UseDivisaoCasting.java

Compile e execute a classe UseDivisaoCasting.

~/k19/operadores$ javac UseDivisaoCasting.java

~/k19/operadores$ java UseDivisaoCasting
20
20.5

Terminal A.79: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac UseDivisaoCasting.java

C:\Users\K19\k19\operadores > java UseDivisaoCasting
20
20.5

Terminal A.80: Compilando e executando em ambiente Windows

www.facebook.com/k19treinamentos 347

RESPOSTAS 348

Complementar 5

1 class UseConcatenacao {
2 public static void main(String [] args) {
3 String s1 = "Rafael";
4 String s2 = "Jonas";
5 String s3 = "Marcelo";
6 String s4 = "Cosentino";
7 String s5 = "Hirata";
8 String s6 = "Martins";
9
10 System.out.println(s1 + " " + s4);
11 System.out.println(s2 + " " + s5);
12 System.out.println(s3 + " " + s6);
13 }
14 }

Código Java A.38: UseConcatenacao.java

Compile e execute a classe UseConcatenacao.

~/k19/operadores$ javac UseConcatenacao.java

~/k19/operadores$ java UseConcatenacao
Rafael Cosentino
Jonas Hirata
Marcelo Martins

Terminal A.81: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac UseConcatenacao.java

C:\Users\K19\k19\operadores > java UseConcatenacao
Rafael Cosentino
Jonas Hirata
Marcelo Martins

Terminal A.82: Compilando e executando em ambiente Windows

Complementar 6

1 class UseOperadoresAtribuicao {
2 public static void main(String [] args) {
3 int x = 5;
4 System.out.println(x);
5 x *= 10;
6 System.out.println(x);
7 x -= 7;
8 System.out.println(x);
9 x /= 4;
10 System.out.println(x);
11 x++;
12 System.out.println(x);
13 x += 5;
14 System.out.println(x);
15 x--;

348 www.k19.com.br

349 A.3. OPERADORES

16 System.out.println(x);
17 x %= 4;
18 System.out.println(x);
19 }
20 }

Código Java A.39: UseOperadoresAtribuicao.java

Compile e execute a classe UseOperadoresAtribuicao.

~/k19/operadores$ javac UseOperadoresAtribuicao.java

~/k19/operadores$ java UseOperadoresAtribuicao
5
15
12
48
6
1
2
1

Terminal A.83: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac UseOperadoresAtribuicao.java

C:\Users\K19\k19\operadores > java UseOperadoresAtribuicao
5
15
12
48
6
1
2
1

Terminal A.84: Compilando e executando em ambiente Windows

Complementar 7

1 class NumeroTelefone {
2 public static void main(String [] args) {
3 int x = 2;
4 x += 3;
5 System.out.println(x);
6 x *= 8;
7 System.out.println(x);
8 x -= 7;
9 System.out.println(x);
10 x /= 3;
11 System.out.println(x);
12 x %= 7;
13 System.out.println(x);
14 x *= 9;
15 System.out.println(x);
16 x += 1;
17 System.out.println(x);
18 }
19 }

Código Java A.40: NumeroTelefone.java

Compile e execute a classe NumeroTelefone.

www.facebook.com/k19treinamentos 349

RESPOSTAS 350

~/k19/operadores$ javac NumeroTelefone.java

~/k19/operadores$ java NumeroTelefone
5
40
33
11
4
36
37

Terminal A.85: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac NumeroTelefone.java

C:\Users\K19\k19\operadores > java NumeroTelefone
5
40
33
11
4
36
37

Terminal A.86: Compilando e executando em ambiente Windows

Complementar 8

1 class UseOperadoresRelacionais {
2 public static void main(String [] args) {
3 int x = 20;
4 int y = 15;
5
6 System.out.println (x > y);
7 System.out.println (x >= y);
8 System.out.println (x < y);
9 System.out.println (x <= y);
10 System.out.println (x == y);
11 System.out.println (x != y);
12 }
13 }

Código Java A.41: UseOperadoresRelacionais.java

Compile e execute a classe UseOperadoresRelacionais.

~/k19/operadores$ javac UseOperadoresRelacionais.java

~/k19/operadores$ java UseOperadoresRelacionais
true
true
false
false
false
true

Terminal A.87: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac UseOperadoresRelacionais.java

C:\Users\K19\k19\operadores > java UseOperadoresRelacionais
true
true
false
false

350 www.k19.com.br

351 A.3. OPERADORES

false
true

Terminal A.88: Compilando e executando em ambiente Windows

Complementar 9

1 class VerificaValores {
2 public static void main(String [] args) {
3 int anoCampeao = 1958;
4 int anoDescobrimentoDoBrasil = 1500;
5
6 System.out.println ((anoCampeao +22)/5 >= (anoDescobrimentoDoBrasil +120) /4);
7 }
8 }

Código Java A.42: VerificaValores.java

Compile e execute a classe VerificaValores.

~/k19/operadores$ javac VerificaValores.java

~/k19/operadores$ java VerificaValores
false

Terminal A.89: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac VerificaValores.java

C:\Users\K19\k19\operadores > java VerificaValores
false

Terminal A.90: Compilando e executando em ambiente Windows

Complementar 10

1 class UseOperadoresLogicos {
2 public static void main(String [] args) {
3 int q = 10;
4 int w = 5;
5 int e = 8;
6 int r = 11;
7
8 System.out.println(q > w | e < r);
9 System.out.println(q > r || e < w);
10 System.out.println(q > e & w < r);
11 System.out.println(q > w && r < e);
12 System.out.println(q > w ^ e < r);
13 }
14 }

Código Java A.43: UseOperadoresLogicos.java

Compile e execute a classe UseOperadoresLogicos.

www.facebook.com/k19treinamentos 351

RESPOSTAS 352

~/k19/operadores$ javac UseOperadoresLogicos.java

~/k19/operadores$ java UseOperadoresLogicos
true
false
true
false
false

Terminal A.91: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac UseOperadoresLogicos.java

C:\Users\K19\k19\operadores > java UseOperadoresLogicos
true
false
true
false
false

Terminal A.92: Compilando e executando em ambiente Windows

Complementar 11

1 class UseTernarioNegacaoIncrementoDecremento {
2 public static void main(String [] args) {
3 int a = 10;
4 int b = 8;
5
6 System.out.println ((a < b) ? a : b);
7 System.out.println (!(a < b) ? "Marcelo" : "Jonas");
8 System.out.println ((a < b) ? a : ++b);
9 System.out.println(!(--a == b) ? a : b + 1);
10 }
11 }

Código Java A.44: UseTernarioNegacaoIncrementoDecremento.java

Compile e execute a classe UseTernarioNegacaoIncrementoDecremento.

~/k19/operadores$ javac UseTernarioNegacaoIncrementoDecremento.java

~/k19/operadores$ java UseTernarioNegacaoIncrementoDecremento
8
Marcelo
9
10

Terminal A.93: Compilando e executando em ambiente Unix

C:\Users\K19\k19\operadores > javac UseTernarioNegacaoIncrementoDecremento.java

C:\Users\K19\k19\operadores > java UseTernarioNegacaoIncrementoDecremento
8
Marcelo
9
10

Terminal A.94: Compilando e executando em ambiente Windows

Questão 1

352 www.k19.com.br

353 A.3. OPERADORES

Resposta c

a) A linguagem Java permite operações de casting.

b) A cópia de valores entre variáveis do mesmo tipo não exige operações de casting.

c) Esta alternativa está correta.

d) Em Java, operações de casting não transformam strings em números.

e) Em Java, operações de casting não transformam números em strings.

Questão 2

Resposta c

a) Não há erro de compilação na linha 6.

b) Não há erro de execução na linha 7.

c) Esta alternativa está correta.

d) Na linha 7, o valor armazenado na variável b é convertido para double através do método cha-
mado parseDouble e não através de uma operação de casting.

e) Na linha 7, o valor armazenado na variável b não é convertido para String.

Questão 3

Resposta d

O valor 255 não está no intervalo do tipo byte. Por isso, na linha 5, ocorre um erro de compila-
ção. Apesar do valor 127 ser do tipo int, como ele está no intervalo do tipo byte, ele é convertido
automaticamente para byte.

Questão 4

Resposta d

Questão 5

Resposta c

A expressão 5/2 envolve apenas números inteiros. Portanto, o resultado será um número inteiro.
Como o resultado matemático da expressão “5/2” é 2.5, a expressão 5/2 devolve o valor 2, pois a parte
fracionária é descartada.

www.facebook.com/k19treinamentos 353

RESPOSTAS 354

A expressão 5.0/2 envolve um número do tipo double e um número de tipo inteiro. Portanto, o seu
resultado será do tipo double e igual a 2.5.

A expressão (double)5/2 envolve duas operações: uma de casting e uma de divisão. Como a ope-
ração de casting tem prioridade maior do que a operação de divisão, a operação de casting será exe-
cutada primeiro nesse caso. Assim, o número 5 é convertido para o número 5.0 no formato double.
Em seguida, é realizada a divisão do valor 5.0 em double pelo valor 2, cujo resultado é do tipo double e
igual a 2.5.

Questão 6

Resposta e

Questão 7

Resposta e

Na linha 5, ocorre um overflow e o valor que será exibido é “-2147483648”.

Questão 8

Resposta b

Questão 9

Resposta a

A primeira linha declara uma variável do tipo int e atribui a ela o valor 10. Na segunda linha, o
operador ++ incrementa o valor da variável i em uma unidade. Assim, o valor da variável passa a ser
11. Na terceira linha, é aplicada a operação += com os operandos i e 10. Assim, o valor da variável i
passa a ser igual a 11 + 10, ou seja, igual a 21. Na quarta linha, o valor da variável i é decrementado
em uma unidade, passando a ser igual a 20. Na última linha, o operador %= é aplicado aos operandos
i e 3. Assim, variável i passa a armazenar o valor 20%3 (o resto da divisão de 20 por 3), que é igual a
2.

Questão 10

Resposta e

Questão 11

Resposta d

354 www.k19.com.br

355 A.3. OPERADORES

Questão 12

Resposta b

Questão 13

Resposta e

Questão 14

Resposta c

Questão 15

Resposta a

Questão 16

Resposta c

Questão 17

Resposta a

O operador ++ deve aparecer imediatamente antes ou depois de uma variável.

Questão 18

Resposta d

O resultado da operação “a = 1” é 1. Dessa forma, a variável b é inicializada com esse valor. Pos-
teriormente, o método println é utilizado para exibir o valor armazenado na variável b.

Questão 19

Resposta d

Na linha 3, os dois operandos do operador + são do tipo char. Dessa forma, a operação que será
efetuada é a adição aritmética. O código do caractere “a” é 97. Consequentemente, o resultado da
adição da linha 3 é 194. De acordo com as regras para definir o tipo do resultado de uma operação
aritmética, temos que esse resultado é do tipo int. Sendo assim, o valor 194 será exibido na saída

www.facebook.com/k19treinamentos 355

RESPOSTAS 356

padrão.

Questão 20

Resposta b

Lembrando que o valor da constante Integer.MIN_VALUE é -2147483648, o resultado da divisão da
linha 3 deveria ser 2147483648. Contudo, esse valor extrapola o intervaldo do tipo int. Sendo assim,
um overflow ocorrerá e o valo exibido será -2147483648.

Questão 21

Resposta d

Há um erro de compilação na linha 3 porque o valor literal 2147483648 que é do tipo int extrapola
o intervalo desse tipo. Se os parênteses que envolvem o valor 2147483648 forem retirados o programa
compila porque o valor -2147483648 está dentro do intervalo do tipo int.

A.4 Controle de Fluxo

Exercício de Fixação 1

~/k19$ mkdir controle -de-fluxo

~/k19$ cd controle -de-fluxo

~/k19/controle -de-fluxo$

Terminal A.95: Criando a pasta controle-de-fluxo em ambiente Unix

C:\Users\K19\k19> md controle -de-fluxo

C:\ Users\K19\k19> cd controle -de-fluxo

C:\ Users\K19\k19\controle -de-fluxo >

Terminal A.96: Criando a pasta controle-de-fluxo em ambiente Windows

Exercício de Fixação 2

1 class AprovadoReprovado {
2 public static void main(String [] args) {
3 double nota = Math.random () * 10;
4
5 System.out.println("A nota do aluno é: " + nota);

356 www.k19.com.br

357 A.4. CONTROLE DE FLUXO

6
7 if (nota < 5) {
8 System.out.println("REPROVADO");
9 } else {
10 System.out.println("APROVADO");
11 }
12 }
13 }

Código Java A.45: AprovadoReprovado.java

Exercício de Fixação 3

~/k19/controle -de-fluxo$ javac AprovadoReprovado.java

~/k19/controle -de-fluxo$ java AprovadoReprovado
A nota do aluno é: 0.2638522892234163
REPROVADO

~/k19/controle -de-fluxo$ java AprovadoReprovado
A nota do aluno é: 6.979547724462908
APROVADO

~/k19/controle -de-fluxo$ java AprovadoReprovado
A nota do aluno é: 9.817359518391823
APROVADO

Terminal A.97: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac OperadoresAritmeticos.java

C:\Users\K19\k19\controle -de-fluxo > java OperadoresAritmeticos
A nota do aluno é: 0.2638522892234163
REPROVADO

C:\Users\K19\k19\controle -de-fluxo > java OperadoresAritmeticos
A nota do aluno é: 6.979547724462908
APROVADO

C:\Users\K19\k19\controle -de-fluxo > java OperadoresAritmeticos
A nota do aluno é: 9.817359518391823
APROVADO

Terminal A.98: Compilando e executando em ambiente Windows

Exercício de Fixação 4

1 class VerificaValorProduto {
2 public static void main(String [] args) {
3 double precoDoProduto1 = Math.random () * 1000;
4 double precoDoProduto2 = Math.random () * 1000;
5
6 System.out.println("O preço do produto 1 é: " + precoDoProduto1);
7 System.out.println("O preço do produto 2 é: " + precoDoProduto2);
8
9 if (precoDoProduto1 < precoDoProduto2) {
10 System.out.println("O produto 1 é o mais barato");
11 } else {
12 if(precoDoProduto2 < precoDoProduto1) {
13 System.out.println("O produto 2 é o mais barato");

www.facebook.com/k19treinamentos 357

RESPOSTAS 358

14 } else {
15 System.out.println("Os preços dos dois produtos são iguais");
16 }
17 }
18 }
19 }

Código Java A.46: VerificaValorProduto.java

Exercício de Fixação 5

~/k19/controle -de-fluxo$ javac VerificaValorProduto.java

~/k19/controle -de-fluxo$ java VerificaValorProduto
O preço do produto 1 é: 407.0629216803149
O preço do produto 2 é: 470.09065026412986
O produto 1 é o mais barato

~/k19/controle -de-fluxo$ java VerificaValorProduto
O preço do produto 1 é: 822.5829453982788
O preço do produto 2 é: 462.3926076619123
O produto 2 é o mais barato

~/k19/controle -de-fluxo$ java VerificaValorProduto
O preço do produto 1 é: 992.427819296529
O preço do produto 2 é: 992.427819296529
Os preços dos dois produtos são iguais

Terminal A.99: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac VerificaValorProduto.java

C:\Users\K19\k19\controle -de-fluxo > java VerificaValorProduto
O preço do produto 1 é: 407.0629216803149
O preço do produto 2 é: 470.09065026412986
O produto 1 é o mais barato

C:\ Users\K19\k19\controle -de-fluxo > java VerificaValorProduto
O preço do produto 1 é: 822.5829453982788
O preço do produto 2 é: 462.3926076619123
O produto 2 é o mais barato

C:\ Users\K19\k19\controle -de-fluxo > java VerificaValorProduto
O preço do produto 1 é: 992.427819296529
O preço do produto 2 é: 992.427819296529
Os preços dos dois produtos são iguais

Terminal A.100: Compilando e executando em ambiente Windows

Exercício de Fixação 6

1 class EscolheRoupa {
2 public static void main(String [] args) {
3 double temperatura = -20 + Math.random () * 60; // De -20 graus a 40 graus.
4 System.out.println("Temperatura: " + temperatura);
5 if (temperatura >= 20) {
6 System.out.println("Está calor");
7 } else {
8 System.out.println("Está frio");
9 }
10

358 www.k19.com.br

359 A.4. CONTROLE DE FLUXO

11 if (temperatura < 20) {
12 System.out.println("blusa");
13 } else {
14 System.out.println("camiseta");
15 }
16
17 if (temperatura >= 20) {
18 System.out.println("bermuda");
19 } else {
20 System.out.println("calça");
21 }
22
23 if (temperatura >= 20) {
24 System.out.println("chinelo");
25 } else {
26 System.out.println("tênis");
27 }
28
29 if (temperatura < 20) {
30 System.out.println("cachecol");
31 } else {
32 System.out.println("óculos de sol");
33 }
34 }
35 }

Código Java A.47: EscolheRoupa.java

Exercício de Fixação 7

~/k19/controle -de-fluxo$ javac EscolheRoupa.java

~/k19/controle -de-fluxo$ java EscolheRoupa
Temperatura: 34.07693368477355
Está calor
camiseta
bermuda
chinelo
óculos de sol

~/k19/controle -de-fluxo$ java EscolheRoupa
Temperatura: -2.3436470133381277
Está frio
blusa
calça
tênis
cachecol

~/k19/controle -de-fluxo$ java EscolheRoupa
Temperatura: 9.759101331534062
Está frio
blusa
calça
tênis
cachecol

Terminal A.101: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac EscolheRoupa.java

C:\Users\K19\k19\controle -de-fluxo > java EscolheRoupa
Temperatura: 34.07693368477355
Está calor
camiseta
bermuda
chinelo
óculos de sol

www.facebook.com/k19treinamentos 359

RESPOSTAS 360

C:\Users\K19\k19\controle -de-fluxo > java EscolheRoupa
Temperatura: -2.3436470133381277
Está frio
blusa
calça
tênis
cachecol

C:\Users\K19\k19\controle -de-fluxo > java EscolheRoupa
Temperatura: 9.759101331534062
Está frio
blusa
calça
tênis
cachecol

Terminal A.102: Compilando e executando em ambiente Windows

Exercício de Fixação 8

1 class EscolheCaminho {
2 public static void main(String [] args) {
3 double valor = Math.random ();
4
5 System.out.println("VALOR: " + valor);
6
7 if (valor < 0.5) {
8 System.out.println("Vire à esquerda");
9
10 valor = Math.random ();
11
12 System.out.println("VALOR: " + valor);
13
14 if (valor < 0.5) {
15 System.out.println("Vire à esquerda");
16 } else {
17 System.out.println("Vire à direita");
18 }
19
20 } else {
21 System.out.println("Vire à direita");
22
23 valor = Math.random ();
24
25 System.out.println("VALOR: " + valor);
26
27 if (valor < 0.5) {
28 System.out.println("Vire à esquerda");
29 } else {
30 System.out.println("Vire à direita");
31 }
32 }
33 }
34 }

Código Java A.48: EscolheCaminho.java

Exercício de Fixação 9

360 www.k19.com.br

361 A.4. CONTROLE DE FLUXO

~/k19/controle -de-fluxo$ javac EscolheCaminho.java

~/k19/controle -de-fluxo$ java EscolheCaminho
VALOR: 0.3017715862415762
Vire à esquerda
VALOR: 0.9011271709760207
Vire à direita

~/k19/controle -de-fluxo$ java EscolheCaminho
VALOR: 0.9884547100858677
Vire à direita
VALOR: 0.4083159531305627
Vire à esquerda

~/k19/controle -de-fluxo$ java EscolheCaminho
VALOR: 0.6411095634177562
Vire à direita
VALOR: 0.9297619245394584
Vire à direita

Terminal A.103: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac EscolheCaminho.java

C:\Users\K19\k19\controle -de-fluxo > java EscolheCaminho
VALOR: 0.3017715862415762
Vire à esquerda
VALOR: 0.9011271709760207
Vire à direita

C:\ Users\K19\k19\controle -de-fluxo > java EscolheCaminho
VALOR: 0.9884547100858677
Vire à direita
VALOR: 0.4083159531305627
Vire à esquerda

C:\ Users\K19\k19\controle -de-fluxo > java EscolheCaminho
VALOR: 0.6411095634177562
Vire à direita
VALOR: 0.9297619245394584
Vire à direita

Terminal A.104: Compilando e executando em ambiente Windows

Exercício de Fixação 10

1 class ADivisivelPorB {
2 public static void main(String [] args) {
3 int a = (int)(Math.random () * 1000);
4 int b = (int)(Math.random () * 20);
5
6 System.out.println("a: " + a);
7 System.out.println("b: " + b);
8
9 if (a % b == 0) {
10 System.out.println("É divisível");
11 } else {
12 System.out.println("Não é divisível");
13 }
14 }
15 }

Código Java A.49: ADivisivelPorB.java

Exercício de Fixação 11

www.facebook.com/k19treinamentos 361

RESPOSTAS 362

~/k19/controle -de-fluxo$ javac ADivisivelPorB.java

~/k19/controle -de-fluxo$ java ADivisivelPorB
a: 779
b: 16
Não é divisível

~/k19/controle -de-fluxo$ java ADivisivelPorB
a: 784
b: 16
É divisível

~/k19/controle -de-fluxo$ java ADivisivelPorB
a: 20
b: 10
É divisível

~/k19/controle -de-fluxo$ java ADivisivelPorB
a: 628
b: 9
Não é divisível

~/k19/controle -de-fluxo$ java ADivisivelPorB
a: 615
b: 11
Não é divisível

Terminal A.105: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac ADivisivelPorB.java

C:\Users\K19\k19\controle -de-fluxo > java ADivisivelPorB
a: 779
b: 16
Não é divisível

C:\ Users\K19\k19\controle -de-fluxo > java ADivisivelPorB
a: 784
b: 16
É divisível

C:\Users\K19\k19\controle -de-fluxo > java ADivisivelPorB
a: 20
b: 10
É divisível

C:\Users\K19\k19\controle -de-fluxo > java ADivisivelPorB
a: 628
b: 9
Não é divisível

C:\ Users\K19\k19\controle -de-fluxo > java ADivisivelPorB
a: 615
b: 11
Não é divisível

Terminal A.106: Compilando e executando em ambiente Windows

Exercício de Fixação 12

1 class Saudacao {
2 public static void main(String [] args) {
3 int hora = (int)(Math.random () * 24);
4 System.out.println(hora + " hora(s)");
5
6 if (hora >= 0 && hora <= 6) {
7 System.out.println("Zzzzz");
8 } else if (hora >= 7 && hora <= 11) {
9 System.out.println("Bom dia");

362 www.k19.com.br

363 A.4. CONTROLE DE FLUXO

10 } else if (hora >= 12 && hora <= 17) {
11 System.out.println("Boa tarde");
12 } else if (hora >= 18 && hora <= 23) {
13 System.out.println("Boa noite");
14 }
15 }
16 }

Código Java A.50: Saudacao.java

Exercício de Fixação 13

~/k19/controle -de-fluxo$ javac Saudacao.java

~/k19/controle -de-fluxo$ java Saudacao
10 hora(s)
Bom dia

~/k19/controle -de-fluxo$ java Saudacao
3 hora(s)
Zzzzz

~/k19/controle -de-fluxo$ java Saudacao
22 hora(s)
Boa noite

~/k19/controle -de-fluxo$ java Saudacao
20 hora(s)
Boa noite

~/k19/controle -de-fluxo$ java Saudacao
15 hora(s)
Boa tarde

Terminal A.107: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac Saudacao.java

C:\Users\K19\k19\controle -de-fluxo > java Saudacao
10 hora(s)
Bom dia

C:\Users\K19\k19\controle -de-fluxo > java Saudacao
3 hora(s)
Zzzzz

C:\Users\K19\k19\controle -de-fluxo > java Saudacao
22 hora(s)
Boa noite

C:\Users\K19\k19\controle -de-fluxo > java Saudacao
20 hora(s)
Boa noite

C:\Users\K19\k19\controle -de-fluxo > java Saudacao
15 hora(s)
Boa tarde

Terminal A.108: Compilando e executando em ambiente Windows

Exercício de Fixação 14

1 class LoremIpsum {

www.facebook.com/k19treinamentos 363

RESPOSTAS 364

2 public static void main(String [] args) {
3 for (int i = 0; i < 5; i++) {
4 System.out.println("Lorem ipsum dolor sit amet");
5 }
6 }
7 }

Código Java A.51: LoremIpsum.java

Exercício de Fixação 15

~/k19/controle -de-fluxo$ javac LoremIpsum.java

~/k19/controle -de-fluxo$ java LoremIpsum
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet

Terminal A.109: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac LoremIpsum.java

C:\Users\K19\k19\controle -de-fluxo > java LoremIpsum
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet

Terminal A.110: Compilando e executando em ambiente Windows

Exercício de Fixação 16

1 class ImprimeAte100 {
2 public static void main(String [] args) {
3 for (int i = 1; i <= 100; i++) {
4 System.out.println(i);
5 }
6 }
7 }

Código Java A.52: ImprimeAte100.java

Exercício de Fixação 17

~/k19/controle -de-fluxo$ javac ImprimeAte100.java

~/k19/controle -de-fluxo$ java ImprimeAte100
1
2
3

364 www.k19.com.br

365 A.4. CONTROLE DE FLUXO

. . .
100

Terminal A.111: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac ImprimeAte100.java

C:\Users\K19\k19\controle -de-fluxo > java ImprimeAte100
1
2
3
. . .
100

Terminal A.112: Compilando e executando em ambiente Windows

Exercício de Fixação 18

1 class ImprimeAte100ExcetoMultiplo3 {
2 public static void main(String [] args) {
3 for (int i = 1; i <= 100; i++) {
4 if (i % 3 != 0) {
5 System.out.println(i);
6 }
7 }
8 }
9 }

Código Java A.53: ImprimeAte100ExcetoMultiplo3.java

Exercício de Fixação 19

~/k19/controle -de-fluxo$ javac ImprimeAte100ExcetoMultiplo3.java

~/k19/controle -de-fluxo$ java ImprimeAte100ExcetoMultiplo3
1
2
4
5
. . .
100

Terminal A.113: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac ImprimeAte100ExcetoMultiplo3.java

C:\Users\K19\k19\controle -de-fluxo > java ImprimeAte100ExcetoMultiplo3
1
2
4
5
. . .
100

Terminal A.114: Compilando e executando em ambiente Windows

Exercício de Fixação 20

www.facebook.com/k19treinamentos 365

RESPOSTAS 366

1 class DivideMaiorInteiro {
2 public static void main(String [] args) {
3 int numero = Integer.MAX_VALUE;
4 while (numero >= 100) {
5 numero /= 2;
6 System.out.println(numero);
7 }
8 }
9 }

Código Java A.54: DivideMaiorInteiro.java

Exercício de Fixação 21

~/k19/controle -de-fluxo$ javac DivideMaiorInteiro.java

~/k19/controle -de-fluxo$ java DivideMaiorInteiro
1073741823
536870911
268435455
. . .

Terminal A.115: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac DivideMaiorInteiro.java

C:\Users\K19\k19\controle -de-fluxo > java DivideMaiorInteiro
1073741823
536870911
268435455
. . .

Terminal A.116: Compilando e executando em ambiente Windows

Exercício de Fixação 22

1 class GeradorDeIngressos {
2 public static void main(String [] args) {
3 for(int i = 1; i <= 4; i++) {
4 for(int j = 1; j <= 20; j++) {
5 System.out.println("Setor: " + i + " Cadeira: " + j);
6 }
7 }
8 }
9 }

Código Java A.55: GeradorDeIngressos.java

Exercício de Fixação 23

366 www.k19.com.br

367 A.4. CONTROLE DE FLUXO

~/k19/controle -de-fluxo$ javac GeradorDeIngressos.java

~/k19/controle -de-fluxo$ java GeradorDeIngressos
Setor 1 Cadeira 1
Setor 1 Cadeira 2
Setor 1 Cadeira 3
. . .
Setor 4 Cadeira 20

Terminal A.117: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac GeradorDeIngressos.java

C:\Users\K19\k19\controle -de-fluxo > java GeradorDeIngressos
Setor 1 Cadeira 1
Setor 1 Cadeira 2
Setor 1 Cadeira 3
. . .
Setor 4 Cadeira 20

Terminal A.118: Compilando e executando em ambiente Windows

Exercício de Fixação 24

1 class JogoDeDado {
2 public static void main(String [] args) {
3 int soma = 0;
4 for(int i = 1; i <= 5; i++) {
5 System.out.println("Lançamento: " + i);
6 int numero = (int)(Math.random () * 6 + 1);
7
8 System.out.println("Número: " + numero);
9 soma += numero;
10
11 System.out.println("Soma: " + soma);
12 System.out.println("-----------------------");
13
14 if(soma > 19) {
15 System.out.println("Você ganhou com " + i + " lançamentos");
16 break;
17 }
18 }
19 }
20 }

Código Java A.56: JogoDeDado.java

Exercício de Fixação 25

~/k19/controle -de-fluxo$ javac JogoDeDado.java

~/k19/controle -de-fluxo$ java JogoDeDado
. . .

Terminal A.119: Compilando e executando em ambiente Unix

www.facebook.com/k19treinamentos 367

RESPOSTAS 368

C:\Users\K19\k19\controle -de-fluxo > javac JogoDeDado.java

C:\Users\K19\k19\controle -de-fluxo > java JogoDeDado
. . .

Terminal A.120: Compilando e executando em ambiente Windows

Exercício de Fixação 26

1 class JogoDeDado2 {
2 public static void main(String [] args) {
3 int soma = 0;
4 for(int i = 1; i <= 5; i++) {
5 System.out.println("Lançamento: " + i);
6 int numero = (int)(Math.random () * 6 + 1);
7
8 System.out.println("Número: " + numero);
9
10 if(numero % 2 == 0) {
11 System.out.println("-----------------------");
12 continue;
13 }
14
15 soma += numero;
16
17 System.out.println("Soma: " + soma);
18 System.out.println("-----------------------");
19
20 if(soma > 9) {
21 System.out.println("Você ganhou com " + i + " lançamentos");
22 break;
23 }
24 }
25
26 if(soma <= 9) {
27 System.out.println("Você perdeu");
28 }
29 }
30 }

Código Java A.57: JogoDeDado2.java

Exercício de Fixação 27

~/k19/controle -de-fluxo$ javac JogoDeDado2.java

~/k19/controle -de-fluxo$ java JogoDeDado2
Lançamento: 1
Número: 2

Lançamento: 2
Número: 1
Soma: 1

Lançamento: 3
Número: 6

Lançamento: 4
Número: 3
Soma: 4

368 www.k19.com.br

369 A.4. CONTROLE DE FLUXO

Lançamento: 5
Número: 5
Soma: 9

Você perdeu

~/k19/controle -de-fluxo$ java JogoDeDado2
Lançamento: 1
Número: 5
Soma: 5

Lançamento: 2
Número: 2

Lançamento: 3
Número: 5
Soma: 10

Você ganhou com 3 lançamentos

~/k19/controle -de-fluxo$ java JogoDeDado2
Lançamento: 1
Número: 3
Soma: 3

Lançamento: 2
Número: 4

Lançamento: 3
Número: 5
Soma: 8

Lançamento: 4
Número: 3
Soma: 11

Você ganhou com 4 lançamentos

Terminal A.121: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac JogoDeDado2.java

C:\Users\K19\k19\controle -de-fluxo > java JogoDeDado2
Lançamento: 1
Número: 2

Lançamento: 2
Número: 1
Soma: 1

Lançamento: 3
Número: 6

Lançamento: 4
Número: 3
Soma: 4

Lançamento: 5
Número: 5
Soma: 9

Você perdeu

C:\Users\K19\k19\controle -de-fluxo > java JogoDeDado2
Lançamento: 1
Número: 5
Soma: 5

Lançamento: 2
Número: 2

Lançamento: 3
Número: 5
Soma: 10

Você ganhou com 3 lançamentos

C:\ Users\K19\k19\controle -de-fluxo > java JogoDeDado2
Lançamento: 1
Número: 3
Soma: 3

www.facebook.com/k19treinamentos 369

RESPOSTAS 370

Lançamento: 2
Número: 4

Lançamento: 3
Número: 5
Soma: 8

Lançamento: 4
Número: 3
Soma: 11

Você ganhou com 4 lançamentos

Terminal A.122: Compilando e executando em ambiente Windows

Exercício de Fixação 28

1 class BartChalkboard {
2 public static void main(String [] args) {
3 for (;;)
4 System.out.println("I WILL NOT XEROX MY BUTT");
5 }
6 }

Código Java A.58: BartChalkboard.java

Exercício de Fixação 29

~/k19/controle -de-fluxo$ javac BartChalkboard.java

~/k19/controle -de-fluxo$ java BartChalkboard
I WILL NOT XEROX MY BUTT
I WILL NOT XEROX MY BUTT
I WILL NOT XEROX MY BUTT
. . .

Terminal A.123: Compilando e executando em ambiente Unix

Em ambiente Unix, digite CTRL+C para interromper a execução do programa no terminal.

C:\Users\K19\k19\controle -de-fluxo > javac BartChalkboard.java

C:\Users\K19\k19\controle -de-fluxo > java BartChalkboard
I WILL NOT XEROX MY BUTT
I WILL NOT XEROX MY BUTT
I WILL NOT XEROX MY BUTT
. . .

Terminal A.124: Compilando e executando em ambiente Windows

Em ambiente Windows, para interromper a execução do programa no terminal digite CTRL+D.

Complementar 1

370 www.k19.com.br

371 A.4. CONTROLE DE FLUXO

1 class ComparaValores {
2 public static void main(String [] args) {
3 double primeiro = Math.random ();
4 double segundo = Math.random ();
5
6 System.out.println("Primeiro: " + primeiro);
7 System.out.println("Segundo: " + segundo);
8
9 if(primeiro < segundo) {
10 System.out.println("Primeiro > Segundo");
11 } else if(primeiro > segundo) {
12 System.out.println("Segundo > Primeiro");
13 } else {
14 System.out.println("Primeiro = Segundo");
15 }
16 }
17 }

Código Java A.59: ComparaValores.java

Compile e execute a classe ComparaValores.

~/k19/controle -de-fluxo$ javac ComparaValores.java

~/k19/controle -de-fluxo$ java ComparaValores
Primeiro: 0.129763492443489
Segundo: 0.00506741041553552
Primeiro > Segundo

~/k19/controle -de-fluxo$ java ComparaValores
Primeiro: 0.16979575246475298
Segundo: 0.7230291214946017
Segundo > Primeiro

~/k19/controle -de-fluxo$ java ComparaValores
Primeiro: 0.8885443635299185
Segundo: 0.8885443635299185
Primeiro = Segundo

Terminal A.125: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac ComparaValores.java

C:\Users\K19\k19\controle -de-fluxo > java ComparaValores
Primeiro: 0.129763492443489
Segundo: 0.00506741041553552
Primeiro > Segundo

C:\ Users\K19\k19\controle -de-fluxo > java ComparaValores
Primeiro: 0.16979575246475298
Segundo: 0.7230291214946017
Segundo > Primeiro

C:\ Users\K19\k19\controle -de-fluxo > java ComparaValores
Primeiro: 0.8885443635299185
Segundo: 0.8885443635299185
Primeiro = Segundo

Terminal A.126: Compilando e executando em ambiente Windows

Complementar 2

1 class BlocoDeAstericos {
2 public static void main(String [] args) {

www.facebook.com/k19treinamentos 371

RESPOSTAS 372

3 for(int i = 0; i < 5; i++) {
4 System.out.println("*****************");
5 }
6 }
7 }

Código Java A.60: BlocoDeAstericos.java

Compile e execute a classe BlocoDeAstericos.

~/k19/controle -de-fluxo$ javac BlocoDeAstericos.java

~/k19/controle -de-fluxo$ java BlocoDeAstericos

Terminal A.127: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac BlocoDeAstericos.java

C:\Users\K19\k19\controle -de-fluxo > java BlocoDeAstericos

Terminal A.128: Compilando e executando em ambiente Windows

Complementar 3

1 class TrianguloDeAstericos {
2 public static void main(String [] args) {
3 String s = "*";
4 for(int i = 0; i < 6; i++) {
5 System.out.println(s);
6 s += "*";
7 }
8 }
9 }

Código Java A.61: TrianguloDeAstericos.java

Compile e execute a classe TrianguloDeAstericos.

~/k19/controle -de-fluxo$ javac TrianguloDeAstericos.java

~/k19/controle -de-fluxo$ java TrianguloDeAstericos
*
**

Terminal A.129: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac TrianguloDeAstericos.java

372 www.k19.com.br

373 A.4. CONTROLE DE FLUXO

C:\Users\K19\k19\controle -de-fluxo > java TrianguloDeAstericos
*
**

Terminal A.130: Compilando e executando em ambiente Windows

Complementar 4

1 class TresTriangulosDeAstericos {
2 public static void main(String [] args) {
3 for(int i = 0; i < 3; i++) {
4 String s = "*";
5 for(int j = 0; j < 6; j++) {
6 System.out.println(s);
7 s += "*";
8 }
9 }
10 }
11 }

Código Java A.62: TresTriangulosDeAstericos.java

Compile e execute a classe TresTriangulosDeAstericos.

~/k19/controle -de-fluxo$ javac TresTriangulosDeAstericos.java

~/k19/controle -de-fluxo$ java TresTriangulosDeAstericos
*
**

*
**

*
**

Terminal A.131: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac TresTriangulosDeAstericos.java

C:\Users\K19\k19\controle -de-fluxo > java TresTriangulosDeAstericos
*
**

*
**

*

www.facebook.com/k19treinamentos 373

RESPOSTAS 374

**

Terminal A.132: Compilando e executando em ambiente Windows

Complementar 5

1 class LosangoDeAstericos {
2 public static void main(String [] args) {
3 String s1 = "";
4 String s2 = "**********";
5 for(int i = 0; i < 5; i++) {
6 System.out.print(s1);
7 System.out.println(s2);
8 s1 += " ";
9 }
10 }
11 }

Código Java A.63: LosangoDeAstericos.java

Compile e execute a classe LosangoDeAstericos.

~/k19/controle -de-fluxo$ javac LosangoDeAstericos.java

~/k19/controle -de-fluxo$ java LosangoDeAstericos

Terminal A.133: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac LosangoDeAstericos.java

C:\Users\K19\k19\controle -de-fluxo > java LosangoDeAstericos

Terminal A.134: Compilando e executando em ambiente Windows

Complementar 6

1 class TresLosangosDeAstericos {
2 public static void main(String [] args) {
3 for(int i = 0; i < 3; i++) {
4 String s1 = "";
5 String s2 = "**********";
6 for(int j = 0; j < 5; j++) {
7 System.out.print(s1);
8 System.out.println(s2);

374 www.k19.com.br

375 A.4. CONTROLE DE FLUXO

9 s1 += " ";
10 }
11 }
12 }
13 }

Código Java A.64: TresLosangosDeAstericos.java

Compile e execute a classe TresLosangosDeAstericos.

~/k19/controle -de-fluxo$ javac TresLosangosDeAstericos.java

~/k19/controle -de-fluxo$ java TresLosangosDeAstericos

Terminal A.135: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac TresLosangosDeAstericos.java

C:\Users\K19\k19\controle -de-fluxo > java TresLosangosDeAstericos

Terminal A.136: Compilando e executando em ambiente Windows

Complementar 7

1 class CartoesDeEstacionamento {
2 public static void main(String [] args) {
3 for(int i = 1; i <= 3; i++) {
4 for(int j = 1; j <= 9; j++) {
5 for(int k = 1; k <= 4; k++) {
6 System.out.println("BLOCO: " + i + " APTO: " + (j * 10 + k));
7 }
8 }
9 }
10 }
11 }

Código Java A.65: CartoesDeEstacionamento.java

www.facebook.com/k19treinamentos 375

RESPOSTAS 376

Compile e execute a classe CartoesDeEstacionamento.

~/k19/controle -de-fluxo$ javac CartoesDeEstacionamento.java

~/k19/controle -de-fluxo$ java CartoesDeEstacionamento
BLOCO: 1 APTO: 11
BLOCO: 1 APTO: 12
BLOCO: 1 APTO: 13
BLOCO: 1 APTO: 14
BLOCO: 1 APTO: 21
BLOCO: 1 APTO: 22
BLOCO: 1 APTO: 23
BLOCO: 1 APTO: 24
. . .

Terminal A.137: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac CartoesDeEstacionamento.java

C:\Users\K19\k19\controle -de-fluxo > java CartoesDeEstacionamento
BLOCO: 1 APTO: 11
BLOCO: 1 APTO: 12
BLOCO: 1 APTO: 13
BLOCO: 1 APTO: 14
BLOCO: 1 APTO: 21
BLOCO: 1 APTO: 22
BLOCO: 1 APTO: 23
BLOCO: 1 APTO: 24
. . .

Terminal A.138: Compilando e executando em ambiente Windows

Complementar 8

1 class Tabuada {
2 public static void main(String [] args) {
3 for (int i = 1; i <= 10; i++) {
4 for (int j = 1; j <= 10; j++) {
5 System.out.println(i + "x" + j + " = " + i * j);
6 }
7 }
8 }
9 }

Código Java A.66: Tabuada.java

Compile e execute a classe Tabuada.

~/k19/controle -de-fluxo$ javac Tabuada.java

~/k19/controle -de-fluxo$ java Tabuada
1x1 = 1
1x2 = 2
1x3 = 3
. . .
10x8 = 80
10x9 = 90
10x10 = 100

Terminal A.139: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac Tabuada.java

C:\Users\K19\k19\controle -de-fluxo > java Tabuada
1x1 = 1

376 www.k19.com.br

377 A.4. CONTROLE DE FLUXO

1x2 = 2
1x3 = 3
. . .
10x8 = 80
10x9 = 90
10x10 = 100

Terminal A.140: Compilando e executando em ambiente Windows

Complementar 9

1 class Piramide {
2 public static void main(String [] args) {
3 int baseMaior = 7;
4
5 for (int i = 1; i <= baseMaior; i += 2) {
6 int espacos = (baseMaior - i) / 2;
7 String linha = "";
8
9 for (int j = 0; j < espacos; j++) {
10 linha += " ";
11 }
12
13 for (int k = 0; k < i; k++) {
14 linha += "*";
15 }
16
17 System.out.println(linha);
18 }
19 }
20 }

Código Java A.67: Piramide.java

Compile e execute a classe Piramide.

~/k19/controle -de-fluxo$ javac Piramide.java

~/k19/controle -de-fluxo$ java Piramide
*

Terminal A.141: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac Piramide.java

C:\Users\K19\k19\controle -de-fluxo > java Piramide
*

Terminal A.142: Compilando e executando em ambiente Windows

Complementar 10

www.facebook.com/k19treinamentos 377

RESPOSTAS 378

1 class ArvoreNatal {
2 public static void main(String [] args) {
3 int baseMaior = 15;
4
5 for (int m = 7; m <= 15; m += 4) {
6
7 for (int i = m - 6; i <= m; i += 2) {
8 int espacos = (baseMaior - i) / 2;
9 String linha = "";
10
11 for (int j = 0; j < espacos; j++) {
12 linha += " ";
13 }
14
15 for (int k = 0; k < i; k++) {
16 linha += "*";
17 }
18
19 System.out.println(linha);
20 }
21 }
22 }
23 }

Código Java A.68: ArvoreNatal.java

Compile e execute a classe ArvoreNatal.

~/k19/controle -de-fluxo$ javac ArvoreNatal.java

~/k19/controle -de-fluxo$ java ArvoreNatal
*

Terminal A.143: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac ArvoreNatal.java

C:\Users\K19\k19\controle -de-fluxo > java ArvoreNatal
*

Terminal A.144: Compilando e executando em ambiente Windows

Complementar 11

378 www.k19.com.br

379 A.4. CONTROLE DE FLUXO

1 class ContaUns {
2 public static void main(String [] args) {
3 double numero = Math.random ();
4 System.out.println(numero);
5
6 String s = "" + numero;
7 int resposta = 0;
8
9 for(int i = 0; i < s.length (); i++) {
10 if(s.charAt(i) == ’1’) {
11 resposta ++;
12 }
13 }
14
15 System.out.println(resposta);
16 }
17 }

Código Java A.69: ContaUns.java

Compile e execute a classe ContaUns.

~/k19/controle -de-fluxo$ javac ContaUns.java

~/k19/controle -de-fluxo$ java ContaUns
0.46029982416581405
2

~/k19/controle -de-fluxo$ java ContaUns
0.24021506754711108
4

~/k19/controle -de-fluxo$ java ContaUns
0.9189156985811225
4

Terminal A.145: Compilando e executando em ambiente Unix

C:\Users\K19\k19\controle -de-fluxo > javac ContaUns.java

C:\Users\K19\k19\controle -de-fluxo > java ContaUns
0.46029982416581405
2

C:\Users\K19\k19\controle -de-fluxo > java ContaUns
0.24021506754711108
4

C:\Users\K19\k19\controle -de-fluxo > java ContaUns
0.9189156985811225
4

Terminal A.146: Compilando e executando em ambiente Windows

Complementar 12

1 class JogoDaSomaImpar {
2 public static void main(String [] args) {
3 int soma = 0;
4 int quantidadeDeSeis = 0;
5
6 for(int i = 0; i < 10; i++) {
7 int numero = (int)(Math.random () * 6 + 1);
8

www.facebook.com/k19treinamentos 379

RESPOSTAS 380

9 System.out.println("Número: " + numero);
10
11 if(numero == 1) {
12 continue;
13 }
14
15 if(numero == 6) {
16 quantidadeDeSeis ++;
17 }
18
19 if(quantidadeDeSeis == 2) {
20 System.out.println("Dois seis! Você perdeu!");
21 break;
22 }
23
24 soma += numero;
25 }
26
27 if(quantidadeDeSeis != 2) {
28 System.out.println("Soma: " + soma);
29 if(soma % 2 != 0) {
30 System.out.println("Soma ímpar! Você ganhou");
31 } else {
32 System.out.println("Soma par! Você perdeu");
33 }
34 }
35 }
36 }

Código Java A.70: JogoDaSomaImpar.java

Compile e execute a classe JogoDaSomaImpar.

~/k19/controle -de-fluxo$ javac JogoDaSomaImpar.java

~/k19/controle -de-fluxo$ java JogoDaSomaImpar
Número: 5
Número: 3
Número: 2
Número: 5
Número: 2
Número: 6
Número: 5
Número: 6
Dois seis! Você perdeu!

~/k19/controle -de-fluxo$ java JogoDaSomaImpar
Número: 1
Número: 2
Número: 2
Número: 1
Número: 6
Número: 1
Número: 4
Número: 3
Número: 2
Número: 2
Soma: 21
Soma ímpar! Você ganhou

~/k19/controle -de-fluxo$ java JogoDaSomaImpar
Número: 4
Número: 4
Número: 2
Número: 4
Número: 3
Número: 5
Número: 5
Número: 3
Número: 6
Número: 2
Soma: 38
Soma par! Você perdeu

Terminal A.147: Compilando e executando em ambiente Unix

380 www.k19.com.br

381 A.4. CONTROLE DE FLUXO

C:\Users\K19\k19\controle -de-fluxo > javac JogoDaSomaImpar.java

C:\Users\K19\k19\controle -de-fluxo > java JogoDaSomaImpar
Número: 5
Número: 3
Número: 2
Número: 5
Número: 2
Número: 6
Número: 5
Número: 6
Dois seis! Você perdeu!

C:\ Users\K19\k19\controle -de-fluxo > java JogoDaSomaImpar
Número: 1
Número: 2
Número: 2
Número: 1
Número: 6
Número: 1
Número: 4
Número: 3
Número: 2
Número: 2
Soma: 21
Soma ímpar! Você ganhou

C:\ Users\K19\k19\controle -de-fluxo > java JogoDaSomaImpar
Número: 4
Número: 4
Número: 2
Número: 4
Número: 3
Número: 5
Número: 5
Número: 3
Número: 6
Número: 2
Soma: 38
Soma par! Você perdeu

Terminal A.148: Compilando e executando em ambiente Windows

Questão 1

Resposta c

Questão 2

Resposta a

Questão 3

Resposta c

No if, a condição deve ser um valor booleano.

Questão 4

Resposta e

www.facebook.com/k19treinamentos 381

RESPOSTAS 382

a) Podemos usar o if sem usar o else.

b) O corpo do else é executado quando a condição do if é falsa.

c) O corpo do if é executado quando a condição é verdadeira.

d) No corpo dos elses podemos definir ifs e outras operações.

e) Esta alternativa está correta.

Questão 5

Resposta d

Nas linhas 1 e 2, são declaradas as variáveis a e b do tipo int e inicializadas com o valor 1.

Na linha 4, compara-se o valor devolvido pela operação a++ com o valor da variável b. A operação
a++ incrementa o valor da variável a em uma unidade, de forma que a passe a armazenar o valor
2. Mas como a operação a++ devolve o valor armazenado na variável a antes de seu incremento, a
condição do if da linha 4 é “1 > 1”. Como a condição é falsa, o fluxo do programa passa para a linha
11.

Na linha 11, compara-se o valor da variável a com o valor devolvido pela operação --b. Como a
operação --b decrementa o valor armazenado na variável b em uma unidade mas devolve o valor que
estava armazenado em b antes de decrementá-la, a condição do if é “2 > 0”. Como essa condição é
verdadeira, o programa segue sua execução na linha 12.

Na linha 12, é atribuído o valor 13 à variável a. A execução desse trecho de código é então encer-
rada. Portanto, o valor da variável a ao final da execução desse trecho de código é 13.

Questão 6

Resposta e

Na linha 1, é declarada a variável a do tipo int e inicializada como valor 1. Como as condições
a >= 0 e a < 2 são ambas verdadeiras, a condição do if da linha 2 é verdadeira. Assim, a linha 3 é
executada e, portanto, a a mensagem “A” é exibida.

O fluxo de execução continua na linha 5. Como o valor da variável a não é maior ou igual a 2, a
operação a >= 2 devolve false. Portanto, a condição do if da linha 5 é falsa e o fluxo de execução é
desviado para a linha 8. Na linha 8, a mensagem “C” é exibida.

Questão 7

Resposta d

Questão 8

382 www.k19.com.br

383 A.4. CONTROLE DE FLUXO

Resposta e

Questão 9

Resposta a

Na linha 1, a variável a do tipo int é declarada e inicializada com o valor 1. Como o valor da
variável a não é maior do que 10, a condição do while da linha 3 é falsa e, portanto, o corpo do laço
não é executado.

Questão 10

Resposta d

Na linha 1, a variável a do tipo int é declarada e inicializada com o valor 1.

A linha 3 do código apresenta a declaração de um laço for. Primeiramente, é declarada a variável
i do tipo int e inicializada com o valor 10.

Em seguida, a condição do for é verificada. Como o valor de i é maior do que 0, a condição é
verdadeira e o corpo do laço é executado. Na linha 4, o valor da variável a passa a ser igual a 3.

O fluxo de execução é então desviado para o trecho de atualização do laço for, onde o valor da
variável i é decrementado em uma unidade.

O fluxo de execução passa para condição do laço for, onde a comparação i > 0 é realizada. Como
o valor da variável i é igual a 9, essa condição é verdadeira e o corpo do laço é executado novamente.

Observe que o corpo do laço for é executado um total de dez vezes. Sendo assim, o valor arma-
zenado pela variável a ao final da execução desse trecho de código é 21.

Questão 11

Resposta d

Esse código compila sem problemas e não apresenta erro ao ser executado. Como a condição do
laço for da linha 3 não foi definida explicitamente, ela devolverá o valor true. Dessa forma, o corpo
do laço será executado indefinidamente, exeibindo a mensagem “K19” em cada iteração.

Questão 12

Resposta d

Observe o corpo laço for da linha 3. Quando o valor da variável i for igual a 3 ou igual a 5, a
condição do if da linha 4 será verdadeira e, portanto, a instrução continue será executada. A instrução
continue desvia o fluxo de execução para o trecho de atualização do laço for.

www.facebook.com/k19treinamentos 383

RESPOSTAS 384

Por outro lado, quando o valor da variável i for 9, a condição do if da linha 8 será verdadeira
e, portanto, a instrução break será executada. A instrução break desvia o fluxo de execução para a
primeira instrução depois do laço a qual pertence.

Dessa forma, a linha 12 será executada quando o valor da variável i for igual a 1, 2, 4, 6, 7 ou 8.
Ou seja, ao final da execução desse trecho de código, a variável a armazenará o valor 1 + 2 + 4 + 6 + 7
+ 8, que é igual a 28.

Questão 13

Resposta e

Observe que o corpo do laço for da linha 2 será executado 10 vezes. Observe também que, a cada
iteração do laço da linha 2, o corpo do laço da linha 3 será executado 10 vezes. Dessa forma, o corpo
do laço da linha 3 será executado um total de 100 vezes. Como a cada iteração do laço da linha 3 a
variável a tem seu valor incrementado em uma unidade, ao final da execução desse trecho de código
o seu valor será igual a 100.

Questão 14

Resposta c

Observe que o corpo do laço for da linha 2 será executado 10 vezes. Observe também que, a cada
iteração do laço da linha 2, o corpo do laço da linha 3 será executado 10 vezes. Dessa forma, o corpo
do laço da linha 3 será executado um total de 100 vezes.

Agora, observe a condição do if da linha 4. Essa condição será verdadeira quando os valores das
variáveis i e j forem iguais. Quando isso ocorrer, a instrução continue será executada, desviando o
fluxo de execução para o trecho de atualização do laço for da linha 3.

Como as variáveis i e j serão iguais quando ambas forem iguais a 0 ou ambas iguais a 1, . . . , ou
ambas iguais a 9, a instrução continue será executada um total de 10 vezes.

Portanto, a linha 7 será executada 100 - 10 vezes, ou seja, 90 vezes. Dessa forma, a operação a++

será executada 90 vezes. Como a variável a é inicializada com o valor 0 e a cada execução da operação
a++ o valor da variável a é incrementado de uma unidade, ao final da execução desse trecho de código
o valor da variável a será igual a 90.

Questão 15

Resposta b

Questão 16

Resposta e

384 www.k19.com.br

385 A.4. CONTROLE DE FLUXO

O laço for declara a variável i do tipo int e inicializa-a com o valor 0. Observe que a condição
do laço verifica se o valor de i é menor do que 10, enquanto que o trecho de atualização do laço
decrementa o valor da variável i.

Na primeira iteração do laço, a variável armazenará o valor 0. Na segunda iteração, a variável
armazenará o valor -1. Na terceira iteração, a variável armazenará o valor -2. E assim por diante, até
a iteração em que a variável i armazenar o valor -2147483648. Nessa iteração, após o bloco do for ser
executado e exibir a mensagem “-2147483648”, o fluxo será desviado para o trecho de atualização do
laço. Como nesse instante a variável i armazena o menor valor do tipo int, ocorre um underflow na
execução da operação i--, de modo que o valor da variável i passa a ser igual a 2147483647. Quando
a condição do laço for verificada, seu resultado será falso, pois o valor de i não será menor do que 10
e então a execução do laço é encerrada.

Portanto, o bloco do laço for será executado 2147483649 vezes.

Questão 17

Resposta c

Esse trecho de código declara duas variáveis do tipo int. A variável a é inicializada com o valor 0
e a variável b é inicializada com o valor 1.

A condição do laço while da linha 3 verifica se o valor de a é menor do que o valor de b. Inici-
almente, essa condição é verdadeira e, portanto, o bloco do laço é executado. Após a execução das
linhas 4 e 5, a variável a passa a armazenar o valor 1 e a variável b passa a armazenar o valor 2. O fluxo
de execução é então desviado para a condição do while, que novamente é verdadeira.

Esse processo continua até o momento em que a atribuição da linha 4 faz com que a variável
a armazene o valor 2147483646 e a atribuição da linha 5 faz com que a variável b armazene o valor
2147483647.

Após essas atribuições, quando a condição do while for verificada, ela será verdadeira e o bloco
do laço será executado novamente. Nesse ponto, após a execução da linha 4, a variável a passa a
armazenar o valor 2147483647. Na execução da linha 5, como a variável b armazena o maior valor
do tipo int, a operação b++ provoca um overflow, de modo que o valor atribuído à variável b seja
-2147483648. Em seguida, a condição do laço é falsa e a execução do laço é interrompida.

Portanto, o bloco do laço while é executado 2147483647 vezes.

Questão 18

Resposta d

Observe a condição do laço while da linha 3. A condição será verdadeira quando o valor armaze-
nado na variável a for maior do que o valor armazenado na variável b ou quando o valor armazenado
na variável a não for maior do que o valor armazenado na variável b. Note que um desses dois casos
sempre ocorrerá, de modo que a condição do laço será sempre verdadeira. Assim, o bloco do laço
será executado indefinidamente.

www.facebook.com/k19treinamentos 385

RESPOSTAS 386

Questão 19

Resposta d

As linhas 1 e 2 desse trecho de código declaram as variáveis a e b do tipo int. Ambas são iniciali-
zadas com o valor 0.

Na linha 3, a condição do laço while é verdadeira, pois o valor armazenado em a é menor ou igual
a 0. Assim, o bloco do laço é executado. Na linha 4, a variável a é incrementada e seu valor passa a
ser 1. Na linha 5, a variável b é decrementada e seu valor passa a ser -1.

Em seguida, a condição do laço é novamente avaliada. Como o valor armazenado em b é menor
ou igual a 0, a condição do laço é verdadeira. O bloco do laço é executado e a variável a passa a
armazenar o valor 2 e a variável b passa a armazenar o valor -2.

Esse processo se repete até que em uma das iterações do laço, o valor 2147483647 é armazenado
na variável a e o valor -2147483647 é armazenado na variável b.

A condição do laço é novamente avaliada. Como o valor armazenado em b é menor ou igual a
zero, a condição do laço é verdadeira e o bloco do laço é executado. Como a armazena o maior valor
do tipo int possível, a operação a++ provoca um overflow e a variável a passa a armazenar o valor
-2147483648. A operação b-- faz com que a variável b armazene o valor -2147483648.

Em seguida, a condição do laço é mais uma vez avaliada. Como a variável a armazena um valor
menor ou igual a 0, a condição do laço é verdadeira e o bloco do laço é executado. A variável a é
incrementada e passa a armazenar o valor -2147483647. Como a variável b armazena o menor valor
do tipo int, a operação b-- provoca um underflow, fazendo com que a variável b armazene o valor
2147483647.

Novamente, a condição do laço é satisfeita, pois o valor armazenado em a é menor ou igual a 0, e
o bloco do laço é executado. A variável a é incrementada, passando a armazenar o valor -2147483646,
e a variável b é decrementada, passando a armazenar o valor 2147483646.

Esse processo se repete, até que as variáveis a e b armazenem o valor 0. Nesse momento, temos
uma situação equivalente àquela ocorrida imediatamente após a execução da linha 2. Portanto, o
bloco do laço será executado indefinidamente.

Questão 20

Resposta b

Como o bloco do if foi definido sem o uso de chaves, ele é formado por apenas uma instrução
(a saber, a instrução da linha 5). Logo, a instrução da linha 6 não faz parte do bloco do if da linha 4.
Dessa forma, o else da linha 7 não está associado ao if da linha 4, provocando um erro de compilação
na linha 7.

Questão 21

Resposta b

386 www.k19.com.br

387 A.4. CONTROLE DE FLUXO

Como a instrução else não admite condição, ocorre um erro de compilação na linha 6.

Questão 22

Resposta a

A classe Programa compila e não provoca erro de execução. Como o valor armazenado na variável a
é 1, o bloco do primeiro caso do switch será executado. Assim, todos os blocos subsequentes também
serão executados e, portanto, os números 1, 2, 3 e 4 serão exibidos na saída padrão.

Questão 23

Resposta b

Como a chave do switch não pode ser do tipo double, há um erro de compilação na linha 4.

Questão 24

Resposta c

A expressão de cada caso do switch pode ser formada apenas por constantes, variáveis final ou
enum types. Como a variável b não é final, ocorre um erro de compilação na linha 6.

Questão 25

Resposta b

Na linha 3, a variável a do tipo int é declarada e inicializada com o valor 1. Na linha 5, está
definido um laço do-while. Como o bloco de um laço do-while é sempre executado ao menos uma
vez, a mensagem “K19” será exibida e a variável a será decrementada. Assim, a variável a passa a
armazenar o valor 0. Em seguida, a condição do laço é avaliada. Como o valor armazenado em a não
é maior do que 0, a execução do laço é encerrada.

Questão 26

Resposta a

Na linha 3, é declarada uma variável final do tipo int e inicializada com 0. Como essa variável é
final, o seu conteúdo não pode ser alterado, de modo que a variável contador armazenará o valor 0
até o final da execução da classe Programa. Assim, o compilador é capaz de detectar que a condição do
while da linha 5 será sempre falsa e, portanto, o código do bloco do laço nunca será executada. Isso
provoca o erro de compilação unreachable code.

Questão 27

www.facebook.com/k19treinamentos 387

RESPOSTAS 388

Resposta c

A instrução continue só pode ser utilizada dentro de um laço. Assim, ocorre um erro de compila-
ção na linha 6. A instrução break só pode ser utilizada dentro de um laço ou em algum caso de uma
instrução switch. Dessa forma, também ocorre um erro de compilação na linha 10 desse código.

Questão 28

Resposta c

Os argumentos do laço for (inicialização, condição e atualização) devem ser separados usando
ponto e vírgula. Assim, ocorre um erro de compilação na linha 3 desse código.

A.5 Array

Exercício de Fixação 1

~/k19$ mkdir arrays

~/k19$ cd arrays

~/k19/arrays$

Terminal A.149: Criando a pasta arrays em ambiente Unix

C:\Users\K19\k19> md arrays

C:\ Users\K19\k19> cd arrays

C:\ Users\K19\k19\arrays >

Terminal A.150: Criando a pasta arrays em ambiente Windows

Exercício de Fixação 2

1 class SequenciaQualquer {
2 public static void main(String [] args) {
3 int[] array = new int [10];
4
5 array [0] = 57;
6 array [1] = 436;
7 array [2] = 724;
8 array [3] = 564;
9 array [4] = 245;
10 array [5] = 47;
11 array [6] = 34;
12 array [7] = 1;
13 array [8] = 347735;
14 array [9] = 83;

388 www.k19.com.br

389 A.5. ARRAY

15
16 for(int i = 0; i < array.length; i++) {
17 System.out.println(array[i]);
18 }
19 }
20 }

Código Java A.71: SequenciaQualquer.java

Exercício de Fixação 3

~/k19/arrays$ javac SequenciaQualquer.java

~/k19/arrays$ java SequenciaQualquer
57
436
724
564
245
47
34
1
347735
83

Terminal A.151: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays > javac SequenciaQualquer.java

C:\Users\K19\k19\arrays > java SequenciaQualquer
57
436
724
564
245
47
34
1
347735
83

Terminal A.152: Compilando e executando em ambiente Windows

Exercício de Fixação 4

1 class SequenciaCrescente {
2 public static void main(String [] args) {
3 int[] array = new int [10];
4
5 for (int i = 0; i < array.length; i++) {
6 array[i] = i;
7 }
8
9 for (int i = 0; i < array.length; i++) {
10 System.out.println(array[i]);
11 }
12 }
13 }

Código Java A.72: SequenciaCrescente.java

www.facebook.com/k19treinamentos 389

RESPOSTAS 390

Exercício de Fixação 5

~/k19/arrays$ javac SequenciaCrescente.java

~/k19/arrays$ java SequenciaCrescente
0
1
2
3
4
5
6
7
8
9

Terminal A.153: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays > javac SequenciaCrescente.java

C:\Users\K19\k19\arrays > java SequenciaCrescente
0
1
2
3
4
5
6
7
8
9

Terminal A.154: Compilando e executando em ambiente Windows

Exercício de Fixação 6

1 class SequenciaDecrescente {
2 public static void main(String [] args) {
3 int[] array = new int [10];
4
5 for (int i = 0; i < array.length; i++) {
6 array[i] = array.length - 1 - i;
7 }
8
9 for (int i = 0; i < array.length; i++) {
10 System.out.println(array[i]);
11 }
12 }
13 }

Código Java A.73: SequenciaDecrescente.java

Exercício de Fixação 7

390 www.k19.com.br

391 A.5. ARRAY

~/k19/arrays$ javac SequenciaDecrescente.java

~/k19/arrays$ java SequenciaDecrescente
9
8
7
6
5
4
3
2
1
0

Terminal A.155: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays$ javac SequenciaDecrescente.java

C:\Users\K19\k19\arrays$ java SequenciaDecrescente
9
8
7
6
5
4
3
2
1
0

Terminal A.156: Compilando e executando em ambiente Windows

Exercício de Fixação 8

1 class SequenciaImpar {
2 public static void main(String [] args) {
3 int[] array = new int [10];
4
5 for (int i = 0; i < array.length; i++) {
6 array[i] = 2 * i + 1;
7 }
8
9 for (int i = 0; i < array.length; i++) {
10 System.out.println(array[i]);
11 }
12 }
13 }

Código Java A.74: SequenciaImpar.java

Exercício de Fixação 9

~/k19/arrays$ javac SequenciaImpar.java

~/k19/arrays$ java SequenciaImpar
1
3
5
7
9
11

www.facebook.com/k19treinamentos 391

RESPOSTAS 392

13
15
17
19

Terminal A.157: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays$ javac SequenciaImpar.java

C:\Users\K19\k19\arrays$ java SequenciaImpar
1
3
5
7
9
11
13
15
17
19

Terminal A.158: Compilando e executando em ambiente Windows

Exercício de Fixação 10

1 class SequenciaAleatoria {
2 public static void main(String [] args) {
3 int[] array = new int [10];
4
5 for (int i = 0; i < array.length; i++) {
6 array[i] = (int)(Math.random () * 100);
7 }
8
9 for (int i = 0; i < array.length; i++) {
10 System.out.println(array[i]);
11 }
12 }
13 }

Código Java A.75: SequenciaAleatoria.java

Exercício de Fixação 11

~/k19/arrays$ javac SequenciaAleatoria.java

~/k19/arrays$ java SequenciaAleatoria
20
76
88
45
39
91
33
25
18
70

Terminal A.159: Compilando e executando em ambiente Unix

392 www.k19.com.br

393 A.5. ARRAY

C:\Users\K19\k19\arrays$ javac SequenciaAleatoria.java

C:\Users\K19\k19\arrays$ java SequenciaAleatoria
20
76
88
45
39
91
33
25
18
70

Terminal A.160: Compilando e executando em ambiente Windows

Exercício de Fixação 12

1 class TabelaQualquer {
2 public static void main(String [] args) {
3 int [][] array = new int [3][3];
4
5 array [0][0] = 19;
6 array [0][1] = 22;
7 array [0][2] = 31;
8 array [1][0] = 2;
9 array [1][1] = 51;
10 array [1][2] = 12;
11 array [2][0] = 41;
12 array [2][1] = 11;
13 array [2][2] = 3;
14
15
16 for (int i = 0; i < array.length; i++) {
17 for (int j = 0; j < array[i]. length; j++) {
18 System.out.println(array[i][j]);
19 }
20 }
21 }
22 }

Código Java A.76: TabelaQualquer.java

Exercício de Fixação 13

~/k19/arrays$ javac TabelaQualquer.java

~/k19/arrays$ java TabelaQualquer
19
22
31
2
51
12
41
11
3

Terminal A.161: Compilando e executando em ambiente Unix

www.facebook.com/k19treinamentos 393

RESPOSTAS 394

C:\Users\K19\k19\arrays$ javac TabelaQualquer.java

C:\Users\K19\k19\arrays$ java TabelaQualquer
19
22
31
2
51
12
41
11
3

Terminal A.162: Compilando e executando em ambiente Windows

Exercício de Fixação 14

1 class TabelaAleatoria {
2 public static void main(String [] args) {
3 int [][] array = new int [3][3];
4
5 for (int i = 0; i < array.length; i++) {
6 for (int j = 0; j < array[i]. length; j++) {
7 array[i][j] = (int)(Math.random () * 100);
8 }
9 }
10
11 for (int i = 0; i < array.length; i++) {
12 for (int j = 0; j < array[i]. length; j++) {
13 System.out.println(array[i][j]);
14 }
15 }
16 }
17 }

Código Java A.77: TabelaAleatoria.java

Exercício de Fixação 15

~/k19/arrays$ javac TabelaAleatoria.java

~/k19/arrays$ java TabelaAleatoria
35
72
13
47
6
74
47
30
27

Terminal A.163: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays$ javac TabelaAleatoria.java

C:\Users\K19\k19\arrays$ java TabelaAleatoria
35
72
13
47

394 www.k19.com.br

395 A.5. ARRAY

6
74
47
30
27

Terminal A.164: Compilando e executando em ambiente Windows

Exercício de Fixação 16

1 class Tabuada {
2 public static void main(String [] args) {
3 int [][] tabuada = new int [10][10];
4
5 for (int i = 0; i < tabuada.length; i++) {
6 for (int j = 0; j < tabuada[i]. length; j++) {
7 tabuada[i][j] = (i + 1) * (j + 1);
8 }
9 }
10
11 for (int i = 0; i < tabuada.length; i++) {
12 for (int j = 0; j < tabuada[i]. length; j++) {
13 System.out.println ((i + 1) + " x " + (j + 1) + " = " + tabuada[i][j]);
14 }
15 }
16 }
17 }

Código Java A.78: Tabuada.java

Exercício de Fixação 17

~/k19/arrays$ javac Tabuada.java

~/k19/arrays$ java Tabuada
1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
. . .
10 x 8 = 80
10 x 9 = 90
10 x 10 = 100

Terminal A.165: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays$ javac Tabuada.java

C:\Users\K19\k19\arrays$ java Tabuada
1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
. . .
10 x 8 = 80
10 x 9 = 90
10 x 10 = 100

Terminal A.166: Compilando e executando em ambiente Windows

www.facebook.com/k19treinamentos 395

RESPOSTAS 396

Complementar 1

1 class GeradorDeGabarito {
2 public static void main(String [] args) {
3 int numeroDeQuestoes = 10;
4 int[] gabarito = new int[numeroDeQuestoes];
5 for(int i = 0; i < gabarito.length; i++) {
6 gabarito[i] = (int)(Math.random () * 3 + 1);
7 System.out.print(gabarito[i] + " ");
8 }
9 System.out.println("gabarito");
10 }
11 }

Código Java A.79: GeradorDeGabarito.java

Compile e execute a classe GeradorDeGabarito.

~/k19/arrays$ javac GeradorDeGabarito.java

~/k19/arrays$ java GeradorDeGabarito
3 3 2 3 1 3 3 2 2 1 gabarito

Terminal A.167: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays$ javac GeradorDeGabarito.java

C:\Users\K19\k19\arrays$ java GeradorDeGabarito
3 3 2 3 1 3 3 2 2 1 gabarito

Terminal A.168: Compilando e executando em ambiente Windows

Complementar 2

1 class GeradorDeRespostasAleatorias {
2 public static void main(String [] args) {
3 int numeroDeQuestoes = 10;
4 int numeroDeAlunos = 5;
5 int [][] respostas = new int[numeroDeAlunos][numeroDeQuestoes];
6 for(int i = 0; i < respostas.length; i++) {
7 for(int j = 0; j < respostas[i]. length; j++) {
8 respostas[i][j] = (int)(Math.random () * 3 + 1);
9 System.out.print(respostas[i][j] + " ");
10 }
11 System.out.println("aluno " + (i + 1));
12 }
13 }
14 }

Código Java A.80: GeradorDeRespostasAleatorias.java

Compile e execute a classe GeradorDeRespostasAleatorias.

~/k19/arrays$ javac GeradorDeRespostasAleatorias.java

~/k19/arrays$ java GeradorDeRespostasAleatorias
1 1 1 1 3 1 3 3 3 1 aluno 1

396 www.k19.com.br

397 A.5. ARRAY

2 3 3 1 3 2 3 1 2 1 aluno 2
1 1 3 1 3 3 3 2 1 3 aluno 3
3 2 1 2 3 1 3 3 2 1 aluno 4
2 3 2 2 3 2 3 3 2 1 aluno 5

Terminal A.169: Compilando e executando a classe em ambiente Unix

C:\Users\K19\k19\arrays$ javac GeradorDeRespostasAleatorias.java

C:\Users\K19\k19\arrays$ java GeradorDeRespostasAleatorias
1 1 1 1 3 1 3 3 3 1 aluno 1
2 3 3 1 3 2 3 1 2 1 aluno 2
1 1 3 1 3 3 3 2 1 3 aluno 3
3 2 1 2 3 1 3 3 2 1 aluno 4
2 3 2 2 3 2 3 3 2 1 aluno 5

Terminal A.170: Compilando e executando a classe em ambiente Windows

Complementar 3

1 class CorretorDeProva {
2 public static void main(String [] args) {
3 int numeroDeQuestoes = 10;
4 int numeroDeAlunos = 5;
5 int[] gabarito = new int[numeroDeQuestoes];
6
7 for(int i = 0; i < gabarito.length; i++) {
8 gabarito[i] = (int)(Math.random () * 3 + 1);
9 System.out.print(gabarito[i] + " ");
10 }
11 System.out.println("gabarito");
12
13 int [][] respostas = new int[numeroDeAlunos][numeroDeQuestoes];
14
15 for(int i = 0; i < respostas.length; i++) {
16 for(int j = 0; j < respostas[i]. length; j++) {
17 respostas[i][j] = (int)(Math.random () * 3 + 1);
18 System.out.print(respostas[i][j] + " ");
19 }
20 System.out.println("aluno " + (i + 1));
21 }
22
23 System.out.println("Resultado:");
24 for(int i = 0; i < respostas.length; i++) {
25 int acertos = 0;
26 for(int j = 0; j < respostas[i]. length; j++) {
27 if(gabarito[j] == respostas[i][j]) {
28 acertos ++;
29 }
30 }
31 System.out.println("Aluno " + (i + 1) + ": " + acertos);
32 }
33 }
34 }

Código Java A.81: CorretorDeProva.java

Compile e execute a classe CorretorDeProva.

~/k19/arrays$ javac CorretorDeProva.java

~/k19/arrays$ java CorretorDeProva
3 3 2 3 1 3 3 2 2 1 gabarito

www.facebook.com/k19treinamentos 397

RESPOSTAS 398

3 1 2 2 3 3 1 1 1 1 aluno 1
3 2 1 1 1 1 3 2 1 2 aluno 2
3 3 3 3 2 3 2 1 3 3 aluno 3
2 2 1 1 1 3 2 1 1 1 aluno 4
3 3 3 1 1 2 1 2 1 1 aluno 5
Resultado:
Aluno 1: 4
Aluno 2: 4
Aluno 3: 4
Aluno 4: 3
Aluno 5: 5

Terminal A.171: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays$ javac CorretorDeProva.java

C:\Users\K19\k19\arrays$ java CorretorDeProva
3 3 2 3 1 3 3 2 2 1 gabarito
3 1 2 2 3 3 1 1 1 1 aluno 1
3 2 1 1 1 1 3 2 1 2 aluno 2
3 3 3 3 2 3 2 1 3 3 aluno 3
2 2 1 1 1 3 2 1 1 1 aluno 4
3 3 3 1 1 2 1 2 1 1 aluno 5
Resultado:
Aluno 1: 4
Aluno 2: 4
Aluno 3: 4
Aluno 4: 3
Aluno 5: 5

Terminal A.172: Compilando e executando em ambiente Windows

Complementar 4

1 class ControleDeVagas {
2 public static void main(String [] args) {
3 int numeroDeAndares = 4;
4 int numeroDeVagasPorAndar = 10;
5 boolean [][] vagas = new boolean[numeroDeAndares][numeroDeVagasPorAndar];
6 for(int i = 0; i < vagas.length; i++) {
7 for(int j = 0; j < vagas[i]. length; j++) {
8 vagas[i][j] = Math.random () < 0.5;
9 System.out.print(vagas[i][j] ? "- " : "X ");
10 }
11 System.out.println("andar " + (i + 1));
12 }
13 }
14 }

Código Java A.82: ControleDeVagas.java

Compile e execute a classe ControleDeVagas.

~/k19/arrays$ javac ControleDeVagas.java

~/k19/arrays$ java ControleDeVagas
X X - X - - - X X - andar 1
X X - - - - X X - - andar 2
X - - - X - - - - X andar 3
X X - X X - - X X X andar 4

Terminal A.173: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays$ javac ControleDeVagas.java

398 www.k19.com.br

399 A.5. ARRAY

C:\Users\K19\k19\arrays$ java ControleDeVagas
X X - X - - - X X - andar 1
X X - - - - X X - - andar 2
X - - - X - - - - X andar 3
X X - X X - - X X X andar 4

Terminal A.174: Compilando e executando em ambiente Windows

Complementar 5

1 class Estacionamento {
2 public static void main(String [] args) {
3 int numeroDeAndares = 4;
4 int numeroDeVagasPorAndar = 10;
5 boolean [][] vagas = new boolean[numeroDeAndares][numeroDeVagasPorAndar];
6 for(int i = 0; i < vagas.length; i++) {
7 for(int j = 0; j < vagas[i]. length; j++) {
8 vagas[i][j] = Math.random () < 0.5;
9 System.out.print(vagas[i][j] ? "- " : "X ");
10 }
11 System.out.println("andar " + (i + 1));
12 }
13
14 System.out.println("Vagas Livres");
15 for(int i = 0; i < vagas.length; i++) {
16 int vagasLivres = 0;
17 for(int j = 0; j < vagas[i]. length; j++) {
18 if(vagas[i][j]) {
19 vagasLivres ++;
20 }
21 }
22 System.out.println("Andar " + (i + 1) + ": " + vagasLivres);
23 }
24 }
25 }

Código Java A.83: Estacionamento.java

Compile e execute a classe Estacionamento.

~/k19/arrays$ javac Estacionamento.java

~/k19/arrays$ java Estacionamento
X X X X X X X - X X andar 1
X - X - X - X - X X andar 2
X X X - - X - X - - andar 3
- - X X X X - X - - andar 4
Vagas Livres
Andar 1: 1
Andar 2: 4
Andar 3: 5
Andar 4: 5

Terminal A.175: Compilando e executando em ambiente Unix

C:\Users\K19\k19\arrays$ javac Estacionamento.java

C:\Users\K19\k19\arrays$ java Estacionamento
X X X X X X X - X X andar 1
X - X - X - X - X X andar 2
X X X - - X - X - - andar 3
- - X X X X - X - - andar 4
Vagas Livres
Andar 1: 1
Andar 2: 4

www.facebook.com/k19treinamentos 399

RESPOSTAS 400

Andar 3: 5
Andar 4: 5

Terminal A.176: Compilando e executando em ambiente Windows

Questão 1

Resposta a

a) Esta alternativa está correta.

b) As posições de um array são numeradas iniciando com o número 0.

c) Um array pode ter mais de 100 posições.

d) Arrays podem armazenar quaisquer tipos de dados.

e) As posições de um array são acessadas com colchetes.

Questão 2

Resposta b

Esse código não apresenta erros de compilação. Na linha 3, é declarado um array de tamanho 10.
Assim, as posições desse array são numeradas de 0 a 9. Portanto, a posição de número 10 não está
definida e ocorre um erro de execução na linha 4 desse código.

Questão 3

Resposta e

Questão 4

Resposta d

As posições de um array com n posições são acessadas usando os número de 0 a n −1. Assim,
para acessar a quinta posição de um array a, devemos fazer a[4].

Questão 5

Resposta e

Esse código não apresenta erros de compilação. Na linha 3 desse código, é criado um array com
10 posições. Assim, suas posições são numeradas de 0 a 9. Na décima primeira iteração do laço for,
ocorrerá a tentativa de acesso à posição de número 10 do array, que não está definida. Isso produz
um erro de execução.

400 www.k19.com.br

401 A.6. METODOS

Questão 6

Resposta c

As posições de um array devem ser acessadas usando tipos compatíveis com o tipo int. Nas
linhas 5 e 6, o valor da variável d é usada para acessar uma posição do array v. Como a variável d é do
tipo double, ocorre um erro de compilação.

Questão 7

Resposta a

A terceira inicialização está incorreta, pois define a quantidade de posições da segunda dimensão
do array sem definir a quantidade de posições da primeira dimensão.

A quinta inicialização está incorreta, pois mescla dois tipos de inicializações: uma em que a ca-
pacidade é definida e outra em que os elementos do array são definidos. Quando os elementos do
array são definidos, a capacidade do array não deve ser informada. Assim, as seguintes inicializações
estão corretas.

1 int[] e1 = new int [2];
2 int[] e2 = new int []{1 ,2};

Questão 8

Resposta d

Esse código não apresenta erro de compilação. Na linha 3, é declarado um array com 10 posições.
Assim, suas posições são numeradas de 0 a 9. Na linha 4, é declarada uma variável do tipo int e
inicializada com o valor -10. Na linha 5, há a tentativa acessar a posição de número dado pelo valor
da variável a. Como a armazena o valor -10, isso produz um erro de execução.

A.6 Metodos

Exercício de Fixação 1

~/k19$ mkdir metodos

~/k19$ cd metodos

~/k19/metodos$

Terminal A.177: Criando a pasta metodos no Linux

www.facebook.com/k19treinamentos 401

RESPOSTAS 402

C:\Users\K19\k19> md metodos

C:\ Users\K19\k19> cd metodos

C:\ Users\K19\k19\metodos >

Terminal A.178: Criando a pasta metodos no Windows

Exercício de Fixação 2

1 class ConsumoDeCombustivel {
2 public static void main(String [] args) {
3 double reposta1 = calculaConsumo (131.679 , 13.5);
4 double reposta2 = calculaConsumo (251.856 , 21.6);
5
6 System.out.println("Consumo: " + reposta1);
7 System.out.println("Consumo: " + reposta2);
8 }
9
10 static double calculaConsumo(double distancia , double combustivel) {
11 double consumo = distancia/combustivel;
12 return consumo;
13 }
14 }

Código Java A.85: ConsumoDeCombustivel.java

Exercício de Fixação 3

~/k19/metodos$ javac ConsumoDeCombustivel.java

~/k19/metodos$ java ConsumoDeCombustivel
Consumo: 9.754
Consumo: 11.659999999999998

Terminal A.179: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac ConsumoDeCombustivel.java

C:\Users\K19\k19\metodos > java ConsumoDeCombustivel
Consumo: 9.754
Consumo: 11.659999999999998

Terminal A.180: Compilando e executando em ambiente Windows

Exercício de Fixação 4

1 class JurosComposto {
2 public static void main(String [] args) {
3 double reposta1 = calculaJurosComposto (10000 , 0.1, 6);
4 double reposta2 = calculaJurosComposto (20000 , 0.05, 6);

402 www.k19.com.br

403 A.6. METODOS

5
6 System.out.println("Montante: " + reposta1);
7 System.out.println("Montante: " + reposta2);
8 }
9
10 static double calculaJurosComposto(double capital , double taxa , int periodo) {
11 double montante = capital * Math.pow(1 + taxa , periodo);
12 return montante;
13 }
14 }

Código Java A.86: JurosComposto.java

Exercício de Fixação 5

~/k19/metodos$ javac JurosComposto.java

~/k19/metodos$ java JurosComposto
Montante: 17715.610000000008
Montante: 26801.91281250001

Terminal A.181: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac JurosComposto.java

C:\Users\K19\k19\metodos > java JurosComposto
Montante: 17715.610000000008
Montante: 26801.91281250001

Terminal A.182: Compilando e executando em ambiente Windows

Exercício de Fixação 6

1 class IRPF {
2 public static void main(String [] args) {
3 double reposta1 = calculaIRPF (1350.57);
4 double reposta2 = calculaIRPF (2150.37);
5 double reposta3 = calculaIRPF (3378.98);
6 double reposta4 = calculaIRPF (3956.12);
7 double reposta5 = calculaIRPF (6200.15);
8
9 System.out.println("IRPF 1: " + reposta1);
10 System.out.println("IRPF 2: " + reposta2);
11 System.out.println("IRPF 3: " + reposta3);
12 System.out.println("IRPF 4: " + reposta4);
13 System.out.println("IRPF 5: " + reposta5);
14 }
15
16 static double calculaIRPF(double renda) {
17 if(renda <= 1787.77) {
18 return 0;
19 } else if(renda <= 2679.29) {
20 return renda * 0.075 - 134.08;
21 } else if(renda <= 3572.43) {
22 return renda * 0.15 - 335.03;
23 } else if(renda <= 4463.81) {
24 return renda * 0.225 - 602.96;
25 } else {

www.facebook.com/k19treinamentos 403

RESPOSTAS 404

26 return renda * 0.275 - 826.15;
27 }
28 }
29 }

Código Java A.87: IRPF.java

Exercício de Fixação 7

~/k19/metodos$ javac IRPF.java

~/k19/metodos$ java IRPF
IRPF 1: 0.0
IRPF 2: 27.197749999999985
IRPF 3: 171.817
IRPF 4: 287.1669999999999
IRPF 5: 878.89125

Terminal A.183: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac IRPF.java

C:\ Users\K19\k19\metodos > java IRPF
IRPF 1: 0.0
IRPF 2: 27.197749999999985
IRPF 3: 171.817
IRPF 4: 287.1669999999999
IRPF 5: 878.89125

Terminal A.184: Compilando e executando em ambiente Windows

Exercício de Fixação 8

1 class IMC {
2 public static void main(String [] args) {
3 double amandaIMC = calculaIMC (52.6, 1.61);
4 double joyceIMC = calculaIMC (54.1, 1.59);
5
6 String amandaSituacao = calculaResultadoIMC(amandaIMC);
7 String joyceSituacao = calculaResultadoIMC(joyceIMC);
8
9 System.out.println("Amanda IMC: " + amandaIMC + " - " + amandaSituacao);
10 System.out.println("Joyce IMC: " + joyceIMC + " - " + joyceSituacao);
11 }
12
13 static double calculaIMC(double peso , double altura) {
14 return peso / (altura * altura);
15 }
16
17 static String calculaResultadoIMC(double imc) {
18 if(imc < 17) {
19 return "Muito abaixo do peso";
20 } else if(imc < 18.5) {
21 return "Abaixo do peso";
22 } else if(imc < 25) {
23 return "Peso normal";
24 } else if(imc < 30) {
25 return "Acima do peso";
26 } else if(imc < 35) {

404 www.k19.com.br

405 A.6. METODOS

27 return "Obesidade I";
28 } else if(imc < 40) {
29 return "Obesidade II - severa";
30 } else {
31 return "Obesidade III - mórbida";
32 }
33 }
34 }

Código Java A.88: IMC.java

Exercício de Fixação 9

~/k19/metodos$ javac IMC.java

~/k19/metodos$ java IMC
Amanda IMC: 20.292426989699468 - Peso normal
Joyce IMC: 21.399469957675723 - Peso normal

Terminal A.185: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac IMC.java

C:\ Users\K19\k19\metodos > java IMC
Amanda IMC: 20.292426989699468 - Peso normal
Joyce IMC: 21.399469957675723 - Peso normal

Terminal A.186: Compilando e executando em ambiente Windows

Exercício de Fixação 10

1 class Arrays {
2 public static void main(String [] args) {
3 int[] array1 = new int [5];
4 int[] array2 = new int [10];
5
6 preencheArray(array1);
7 preencheArray(array2);
8
9 exibeArray(array1);
10 exibeArray(array2);
11 }
12
13 static void preencheArray(int[] array) {
14 for(int i = 0; i < array.length; i++) {
15 array[i] = (int)(Math.random () * 100);
16 }
17 }
18
19 static void exibeArray(int[] array) {
20 System.out.println("Array: ");
21 for(int i = 0; i < array.length; i++) {
22 System.out.println("array[" + i + "] = " + array[i]);
23 }
24 System.out.println("------------------------------------");
25 }
26 }

www.facebook.com/k19treinamentos 405

RESPOSTAS 406

Código Java A.89: Arrays.java

Exercício de Fixação 11

~/k19/metodos$ javac Arrays.java

~/k19/metodos$ java Arrays
Array:
array [0] = 8
array [1] = 74
array [2] = 26
array [3] = 30
array [4] = 80

Array:
array [0] = 92
array [1] = 63
array [2] = 79
array [3] = 88
array [4] = 19
array [5] = 44
array [6] = 4
array [7] = 36
array [8] = 85
array [9] = 23

Terminal A.187: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac Arrays.java

C:\Users\K19\k19\metodos > java Arrays
Array:
array [0] = 8
array [1] = 74
array [2] = 26
array [3] = 30
array [4] = 80

Array:
array [0] = 92
array [1] = 63
array [2] = 79
array [3] = 88
array [4] = 19
array [5] = 44
array [6] = 4
array [7] = 36
array [8] = 85
array [9] = 23

Terminal A.188: Compilando e executando em ambiente Windows

Exercício de Fixação 12

1 class Arrays {
2 public static void main(String [] args) {
3 int[] array1 = new int [5];
4 int[] array2 = new int [10];
5

406 www.k19.com.br

407 A.6. METODOS

6 preencheArray(array1);
7 preencheArray(array2);
8
9 exibeArray(array1);
10 exibeArray(array2);
11
12 int pares1 = contaPar(array1);
13 int pares2 = contaPar(array2);
14
15 System.out.println("Quantidade de pares do primeiro array: " + pares1);
16 System.out.println("Quantidade de pares do segundo array: " + pares2);
17 }
18
19 static int contaPar(int[] array) {
20 int pares = 0;
21 for(int i = 0; i < array.length; i++) {
22 if(array[i] % 2 == 0) {
23 pares ++;
24 }
25 }
26 return pares;
27 }
28
29 static void preencheArray(int[] array) {
30 for(int i = 0; i < array.length; i++) {
31 array[i] = (int)(Math.random () * 100);
32 }
33 }
34
35 static void exibeArray(int[] array) {
36 System.out.println("Array: ");
37 for(int i = 0; i < array.length; i++) {
38 System.out.println("array[" + i + "] = " + array[i]);
39 }
40 System.out.println("------------------------------------");
41 }
42 }

Código Java A.90: Arrays.java

Exercício de Fixação 13

~/k19/metodos$ javac Arrays.java

~/k19/metodos$ java Arrays
Array:
array [0] = 95
array [1] = 16
array [2] = 65
array [3] = 2
array [4] = 20

Array:
array [0] = 9
array [1] = 13
array [2] = 32
array [3] = 16
array [4] = 54
array [5] = 56
array [6] = 53
array [7] = 66
array [8] = 13
array [9] = 8

Quantidade de pares do primeiro array: 3
Quantidade de pares do segundo array: 6

Terminal A.189: Compilando e executando em ambiente Unix

www.facebook.com/k19treinamentos 407

RESPOSTAS 408

C:\Users\K19\k19\metodos > javac Arrays.java

C:\Users\K19\k19\metodos > java Arrays
Array:
array [0] = 95
array [1] = 16
array [2] = 65
array [3] = 2
array [4] = 20

Array:
array [0] = 9
array [1] = 13
array [2] = 32
array [3] = 16
array [4] = 54
array [5] = 56
array [6] = 53
array [7] = 66
array [8] = 13
array [9] = 8

Quantidade de pares do primeiro array: 3
Quantidade de pares do segundo array: 6

Terminal A.190: Compilando e executando em ambiente Windows

Exercício de Fixação 14

1 class Produtorio {
2 public static void main(String [] args) {
3 double p1 = produtorio (10.7, 5.8);
4 double p2 = produtorio (5.8, 9.8, 11.7);
5 double p3 = produtorio (7.1, 9.2, 10.3, 4.5);
6
7 System.out.println(p1);
8 System.out.println(p2);
9 System.out.println(p3);
10 }
11
12 static double produtorio(double d1, double d2) {
13 return d1 * d2;
14 }
15
16 static double produtorio(double d1, double d2, double d3) {
17 return d1 * d2 * d3;
18 }
19
20 static double produtorio(double d1, double d2, double d3, double d4) {
21 return d1 * d2 * d3 * d4;
22 }
23 }

Código Java A.91: Produtorio.java

Exercício de Fixação 15

~/k19/metodos$ javac Produtorio.java

~/k19/metodos$ java Produtorio
62.059999999999995

408 www.k19.com.br

409 A.6. METODOS

665.028
3027.582

Terminal A.191: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac Produtorio.java

C:\Users\K19\k19\metodos > java Produtorio
62.059999999999995
665.028
3027.582

Terminal A.192: Compilando e executando em ambiente Windows

Exercício de Fixação 16

1 class Maximo {
2 public static void main(String [] args) {
3
4 double a = maximo (10.8, 20.5);
5 String b = maximo("Ana", "Amanda");
6
7 System.out.println(a);
8 System.out.println(b);
9 }
10
11 static double maximo(double d1, double d2) {
12 if (d1 >= d2)
13 return d1;
14 else
15 return d2;
16 }
17
18 static String maximo(String s1, String s2) {
19 if (s1.length () >= s2.length ())
20 return s1;
21 else
22 return s2;
23 }
24 }

Código Java A.92: Maximo.java

Exercício de Fixação 17

~/k19/metodos$ javac Maximo.java

~/k19/metodos$ java Maximo
20.5
Amanda

Terminal A.193: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac Maximo.java

C:\Users\K19\k19\metodos > java Maximo
20.5

www.facebook.com/k19treinamentos 409

RESPOSTAS 410

Amanda

Terminal A.194: Compilando e executando em ambiente Windows

Exercício de Fixação 18

1 class AchaMaior {
2 public static void main(String [] args) {
3
4 double m1 = achaMaior (1.5);
5 double m2 = achaMaior (5.3, 8.5, 3.4);
6 double m3 = achaMaior (3.2, 7.4, 5.1, 9.7);
7
8 System.out.println(m1);
9 System.out.println(m2);
10 System.out.println(m3);
11 }
12
13 static double achaMaior(double v, double ... valores) {
14 double maior = v;
15 for(int i = 0; i < valores.length; i++) {
16 if(maior < valores[i]) {
17 maior = valores[i];
18 }
19 }
20 return maior;
21 }
22 }

Código Java A.93: AchaMaior.java

Exercício de Fixação 19

~/k19/metodos$ javac AchaMaior.java

~/k19/metodos$ java AchaMaior
1.5
8.5
9.7

Terminal A.195: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac AchaMaior.java

C:\Users\K19\k19\metodos > java AchaMaior
1.5
8.5
9.7

Terminal A.196: Compilando e executando em ambiente Windows

Exercício de Fixação 20

410 www.k19.com.br

411 A.6. METODOS

1 class Concatenacao {
2 public static void main(String [] args) {
3
4 String s1 = concatena("a", "ba", "ca", "xi");
5 String s2 = concatena ();
6 String s3 = concatena("mo", "ran", "go");
7
8 System.out.println(s1);
9 System.out.println(s2);
10 System.out.println(s3);
11 }
12
13 private static String concatena(String ... strings) {
14 String concatenacao = "";
15
16 for (int i = 0; i < strings.length; i++) {
17 concatenacao += strings[i];
18 }
19
20 return concatenacao;
21 }
22 }

Código Java A.94: Concatenacao.java

Exercício de Fixação 21

~/k19/metodos$ javac Concatenacao.java

~/k19/metodos$ java Concatenacao
abacaxi

morango

Terminal A.197: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac Concatenacao.java

C:\Users\K19\k19\metodos > java Concatenacao
abacaxi

morango

Terminal A.198: Compilando e executando em ambiente Windows

Complementar 1

1 class AnoBissexto {
2 public static void main(String [] args) {
3 boolean b = bissexto (2000);
4 System.out.println("2000 " + b);
5
6 b = bissexto (2012);
7 System.out.println("2012 " + b);
8
9 b = bissexto (2025);
10 System.out.println("2025 " + b);

www.facebook.com/k19treinamentos 411

RESPOSTAS 412

11
12 b = bissexto (2100);
13 System.out.println("2100 " + b);
14 }
15
16 static boolean bissexto(int ano){
17 return ano % 400 == 0 || (ano % 100 != 0 && ano % 4 == 0);
18 }
19 }

Código Java A.95: AnoBissexto.java

Compile e execute a classe AnoBissexto.

~/k19/metodos$ javac AnoBissexto.java

~/k19/metodos$ java AnoBissexto
2000 true
2012 true
2025 false
2100 false

Terminal A.199: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac AnoBissexto.java

C:\Users\K19\k19\metodos >java AnoBissexto
2000 true
2012 true
2025 false
2100 false

Terminal A.200: Compilando e executando em ambiente Windows

Complementar 2

1 class VerificaDatas {
2 public static void main(String [] args) {
3 boolean b = verificaData (29, 2, 2100);
4
5 System.out.println("29/02/2100 - " + b);
6
7 b = verificaData (29, 2, 2004);
8
9 System.out.println("29/02/2004 - " + b);
10
11 b = verificaData (31, 4, 2000);
12
13 System.out.println("31/04/2000 - " + b);
14 }
15
16 static boolean bissexto(int ano){
17 return ano % 400 == 0 || (ano % 100 != 0 && ano % 4 == 0);
18 }
19
20 static boolean verificaData(int dia , int mes , int ano) {
21 int[] dias = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
22
23 boolean b = bissexto(ano);
24
25 if(b) {
26 dias [1] = 29;
27 }

412 www.k19.com.br

413 A.6. METODOS

28
29 return (dia >= 1 && dia <= dias[mes - 1]) && (mes >= 1 && mes <= 12) && ano >= 1;
30 }
31 }

Código Java A.96: VerificaDatas.java

Compile e execute a classe AnoBissexto.

~/k19/metodos$ javac VerificaDatas.java

~/k19/metodos$ java VerificaDatas
29/02/2100 - false
29/02/2004 - true
31/04/2000 - false

Terminal A.201: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac VerificaDatas.java

C:\Users\K19\k19\metodos > java VerificaDatas
29/02/2100 - false
29/02/2004 - true
31/04/2000 - false

Terminal A.202: Compilando e executando em ambiente Windows

Complementar 3

1 class Pascoa {
2 public static void main(String [] args) {
3 String s = pascoa (2000);
4 System.out.println("Páscoa " + s);
5
6 s = pascoa (2012);
7 System.out.println("Páscoa " + s);
8
9 s = pascoa (2025);
10 System.out.println("Páscoa " + s);
11
12 s = pascoa (2100);
13 System.out.println("Páscoa " + s);
14 }
15
16 static String pascoa(int ano){
17 int a = ano % 19;
18 int b = ano / 100;
19 int c = ano % 100;
20 int d = b / 4;
21 int e = b % 4;
22 int f = (b + 8) / 25;
23 int g = (b - f + 1) / 3;
24 int h = (19 * a + b -d - g + 15) % 30;
25 int i = c / 4;
26 int k = c % 4;
27 int l = (32 + 2 * e + 2 * i - h - k) % 7 ;
28 int m = (a + 11 * h + 22 * l) / 451;
29
30 int mes = (h + l - 7 * m + 114) / 31;
31 int dia = ((h + l - 7 * m + 114) % 31) + 1;
32
33 return dia + "/" + mes + "/" + ano;
34 }

www.facebook.com/k19treinamentos 413

RESPOSTAS 414

35 }

Código Java A.97: Pascoa.java

Compile e execute a classe Pascoa.

~/k19/metodos$ javac Pascoa.java

~/k19/metodos$ java Pascoa
Páscoa: 23/4/2000
Páscoa: 8/4/2012
Páscoa: 20/4/2025
Páscoa: 28/3/2100

Terminal A.203: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac Pascoa.java

C:\Users\K19\k19\metodos > java Pascoa
Páscoa: 23/4/2000
Páscoa: 8/4/2012
Páscoa: 20/4/2025
Páscoa: 28/3/2100

Terminal A.204: Compilando e executando em ambiente Unix

Complementar 4

1 class DiaDaSemana {
2 public static void main(String [] args) {
3 int d1 = diaDaSemana (30, 10, 1984);
4
5 int d2 = diaDaSemana (2, 4, 1985);
6
7 int d3 = diaDaSemana (12, 12, 1982);
8
9 String [] dias = {
10 "domingo",
11 "segunda",
12 "terça",
13 "quarta",
14 "quinta",
15 "sexta",
16 "sábado"
17 };
18
19 System.out.println("30/10/1984 foi " + dias[d1]);
20
21 System.out.println("2/4/1985 foi " + dias[d2]);
22
23 System.out.println("12/12/1982 foi " + dias[d3]);
24 }
25
26 static int diaDaSemana(int dia , int mes , int ano) {
27 int a = (14 - mes) / 12;
28 int y = ano - a;
29 int m = mes + 12 * a - 2;
30 int q = dia + 31 * m / 12 + y + y / 4 - y / 100 + y / 400;
31 int d = q % 7;
32
33 return d;
34 }
35 }

414 www.k19.com.br

415 A.6. METODOS

Código Java A.98: Pascoa.java

Compile e execute a classe DiaDaSemana.

~/k19/metodos$ javac DiaDaSemana.java

~/k19/metodos$ java DiaDaSemana
30/10/1984 foi terça
2/4/1985 foi terça
12/12/1982 foi domingo

Terminal A.205: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac DiaDaSemana.java

C:\Users\K19\k19\metodos > java DiaDaSemana
30/10/1984 foi terça
2/4/1985 foi terça
12/12/1982 foi domingo

Terminal A.206: Compilando e executando em ambiente Windows

Complementar 5

1 class ExibeCalendario {
2 public static void main(String [] args) {
3
4 exibeCalendario (10, 1984);
5
6 exibeCalendario (4, 1985);
7
8 exibeCalendario (12, 1982);
9
10 exibeCalendario (2, 2000);
11
12 }
13
14 static boolean bissexto(int ano){
15 return ano % 400 == 0 || (ano % 100 != 0 && ano % 4 == 0);
16 }
17
18 static int diaDaSemana(int dia , int mes , int ano) {
19 int a = (14 - mes) / 12;
20 int y = ano - a;
21 int m = mes + 12 * a - 2;
22 int q = dia + 31 * m / 12 + y + y / 4 - y / 100 + y / 400;
23 int d = q % 7;
24
25 return d;
26 }
27
28 static void exibeCalendario(int mes , int ano) {
29 int[] dias = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
30
31 boolean b = bissexto(ano);
32
33 if(b) {
34 dias [1] = 29;
35 }
36
37 int d = diaDaSemana (1, mes , ano);

www.facebook.com/k19treinamentos 415

RESPOSTAS 416

38
39 System.out.println("Dom Seg Ter Qua Qui Sex Sab");
40
41 // espaços da primeira semana
42 for(int i = 0; i < d; i++) {
43 System.out.print(" ");
44 }
45
46 for(int i = 1; i <= dias[mes - 1]; i++) {
47 String dia = "" + i;
48 if(i < 10) {
49 dia = "0" + dia;
50 }
51
52 System.out.print(" " + dia + " ");
53
54 if((i + d) % 7 == 0) {
55 System.out.println ();
56 }
57 }
58 System.out.println("\n----------------------------");
59 }
60 }

Código Java A.99: ExibeCalendario.java

Compile e execute a classe ExibeCalendario.

~/k19/metodos$ javac ExibeCalendario.java

~/k19/metodos$ java ExibeCalendario
Dom Seg Ter Qua Qui Sex Sab

01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Dom Seg Ter Qua Qui Sex Sab

01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

Dom Seg Ter Qua Qui Sex Sab

01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Dom Seg Ter Qua Qui Sex Sab

01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29

Terminal A.207: Compilando e executando em ambiente Unix

C:\Users\K19\k19\metodos > javac ExibeCalendario.java

C:\Users\K19\k19\metodos > java ExibeCalendario
Dom Seg Ter Qua Qui Sex Sab

01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Dom Seg Ter Qua Qui Sex Sab

01 02 03 04 05 06
07 08 09 10 11 12 13

416 www.k19.com.br

417 A.6. METODOS

14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

Dom Seg Ter Qua Qui Sex Sab

01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Dom Seg Ter Qua Qui Sex Sab

01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29

Terminal A.208: Compilando e executando em ambiente Windows

Questão 1

Resposta c

a) Um método pode ter no máximo um tipo de retorno.

b) Métodos podem ou não ter parâmetros.

c) Esta alternativa está correta.

d) Um método definido com void não devolve resposta.

e) A palavra return é utilizada para finalizar a execução de um método e indicar o valor a ser
devolvido (caso o método não seja void).

Questão 2

Resposta a

O método foi definido com void e, portanto, não devolve uma resposta.

Questão 3

Resposta e

O primeiro argumento do método teste deve ser compatível com o tipo int e o segundo argu-
mento do método teste deve ser compatível com o tipo double. Além disso, a variável que armazena a
resposta devolvida pelo método teste deve ser de tipo compatível com o tipo double. Portanto, apenas
a inicialização V esta correta.

Nas inicializações I, II e IV, o primeiro argumento (a saber, o valor 1.0) passado para o método
teste não é compatível com o tipo int.

www.facebook.com/k19treinamentos 417

RESPOSTAS 418

Na inicialização V, a variável a é do tipo int, que não é compatível com o valor de tipo double

devolvido pelo método teste.

Questão 4

Resposta d

Os argumentos do método teste devem ser compatíveis com o tipo int. Além disso, a variável
que armazena a resposta devolvida pelo método teste deve ser compatível com o tipo int. Portanto,
apenas as alternativas II e III estão corretas.

Na inicialização I, o primeiro argumento (a saber, o valor 1.0) não é compatível com o tipo int.

Na inicialização IV, apenas um argumento está sendo passado para o método teste. No entanto,
esse método exige dois parâmetros.

Na inicialização V, os argumentos foram separados com ponto e vírgula, mas eles devem ser se-
parados por vírgula.

Questão 5

Resposta e

a) O método teste devolve resposta.

b) O valor da expressão a+b é convertido para o tipo double automaticamente.

c) Um método pode receber dois parâmetros.

d) O método teste não pode ser void pois ele devolve uma resposta.

e) Esta alternativa está correta.

Questão 6

Resposta b

A conversão de um valor do tipo int para um valor do tipo String não é realizada de forma auto-
mática.

Questão 7

Resposta c

Esse código não produz erro de compilação. A variável a do método trocaValor é independente
da variável a do método main. Elas possuem o mesmo nome, mas são variáveis diferentes. Quando

418 www.k19.com.br

419 A.6. METODOS

o método trocaValor é invocado na linha 4, o valor da variável a do método main é armazenado na
variável a do método trocaValor.

A atribuição realizada na linha 9 altera o valor da variável a do método trocaValor e não o valor da
variável a definida no método main.

Questão 8

Resposta d

A variável a do método main armazena uma referência para um array. Na chamada ao método
trocaValor na linha 4, é essa referência que é passada como argumento. Assim, no método trocaValor,
a variável a armazenará essa mesma referência. Portanto, a execução das linhas 10 e 11 altera o
conteúdo do array criado no método main.

Questão 9

Resposta c

a) A possibilidade de criar métodos com nomes iguais é chamada de sobrecarga.

b) Dois métodos diferentes podem ter variáveis locais com o mesmo nome.

c) Esta alternativa está correta.

d) Um método não pode alterar o valor das variáveis locais de outro método.

e) A alternativa c está correta.

Questão 10

Resposta d

A declaração I está incorreta, pois os três pontos devem preceder o nome da variável.

A declaração III está incorreta, pois o varargs deve ser o último parâmetro do método.

Como o varargs, se existir, deve ser o último parâmetro do método, então um método pode ter
no máximo um varargs. Portanto, a declaração V está incorreta.

Questão 11

Resposta e

Para que esse código compile, o método teste deve permitir que zero, dois ou três parâmetros se-
jam passados. Podemos usar varargs para permitir que um número variável de argumentos possam
ser passados ao método.

www.facebook.com/k19treinamentos 419

RESPOSTAS 420

1 class Programa {
2 public static void main(String [] args) {
3 teste();
4 teste(1, 2);
5 teste(1, 2, 3);
6 }
7
8 static void teste(int... numeros) { }
9
10 }

A.7 String

Exercício de Fixação 1

~/k19$ mkdir string

~/k19$ cd string

~/k19/string$

Terminal A.209: Criando a pasta string no Unix

C:\Users\K19\k19> md string

C:\ Users\K19\k19> cd string

C:\ Users\K19\k19\string >

Terminal A.210: Criando a pasta string no Windows

Exercício de Fixação 2

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 }
7 }

Código Java A.101: CumpoFiscal.java

Exercício de Fixação 3

~/k19/string$ javac CupomFiscal.java

420 www.k19.com.br

421 A.7. STRING

~/k19/string$ java CupomFiscal
--

CUPOM FISCAL
--

Terminal A.211: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac CupomFiscal.java

C:\Users\K19\k19\string > java CupomFiscal
--

CUPOM FISCAL
--

Terminal A.212: Compilando e executando em ambiente Windows

Exercício de Fixação 4

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8 }
9 }

Código Java A.102: CumpoFiscal.java

~/k19/string$ javac CupomFiscal.java

~/k19/string$ java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--

Terminal A.213: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac CupomFiscal.java

C:\Users\K19\k19\string > java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--

Terminal A.214: Compilando e executando em ambiente Windows

Exercício de Fixação 5

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");

www.facebook.com/k19treinamentos 421

RESPOSTAS 422

5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 for(int i = 0; i < nomes.length; i++) {
11 if(nomes[i]. length () <= 16) {
12 System.out.format("%-16s\n", nomes[i]);
13 } else {
14 System.out.format("%-16s\n", nomes[i]. substring(0, 16));
15 }
16 }
17 }
18 }

Código Java A.103: CupomFiscal.java

~/k19/string$ javac CupomFiscal.java

~/k19/string$ java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete
Chocolate
Refrigerante
Bolacha de Choco

Terminal A.215: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac CupomFiscal.java

C:\Users\K19\k19\string > java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete
Chocolate
Refrigerante
Bolacha de Choco

Terminal A.216: Compilando e executando em ambiente Windows

Exercício de Fixação 6

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 double [] precos = {18.75 , 5.0, 3.89, 1.8};
11 for(int i = 0; i < nomes.length; i++) {
12 if(nomes[i]. length () <= 16) {
13 System.out.format("%-16s %10.2f\n", nomes[i], precos[i]);
14 } else {
15 System.out.format("%-16s %10.2f\n", nomes[i]. substring(0, 16), precos[i]);
16 }

422 www.k19.com.br

423 A.7. STRING

17 }
18 }
19 }

Código Java A.104: CupomFiscal.java

~/k19/string$ javac CupomFiscal.java

~/k19/string$ java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75
Chocolate 5.00
Refrigerante 3.89
Bolacha de Choco 1.80

Terminal A.217: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac CupomFiscal.java

C:\Users\K19\k19\string > java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75
Chocolate 5.00
Refrigerante 3.89
Bolacha de Choco 1.80

Terminal A.218: Compilando e executando em ambiente Windows

Exercício de Fixação 7

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 double [] precos = {18.75 , 5.0, 3.89, 1.8};
11 int[] quantidades = {2, 3, 14, 58};
12 for(int i = 0; i < nomes.length; i++) {
13 if(nomes[i]. length () <= 16) {
14 System.out.format("%-16s %10.2f %03d\n", nomes[i],
15 precos[i], quantidades[i]);
16 } else {
17 System.out.format("%-16s %10.2f %03d\n", nomes[i]. substring(0, 16),
18 precos[i], quantidades[i]);
19 }
20 }
21 }
22 }

Código Java A.105: CumpoFiscal.java

~/k19/string$ javac CupomFiscal.java

www.facebook.com/k19treinamentos 423

RESPOSTAS 424

~/k19/string$ java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002
Chocolate 5.00 003
Refrigerante 3.89 014
Bolacha de Choco 1.80 058

Terminal A.219: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac CupomFiscal.java

C:\Users\K19\k19\string > java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002
Chocolate 5.00 003
Refrigerante 3.89 014
Bolacha de Choco 1.80 058

Terminal A.220: Compilando e executando em ambiente Windows

Exercício de Fixação 8

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 double [] precos = {18.75 , 5.0, 3.89, 1.8};
11 int[] quantidades = {2, 3, 14, 58};
12 for(int i = 0; i < nomes.length; i++) {
13 double totalDoProduto = precos[i] * quantidades[i];
14 if(nomes[i]. length () <= 16) {
15 System.out.format("%-16s %10.2f %03d %10.2f\n", nomes[i],
16 precos[i], quantidades[i], totalDoProduto);
17 } else {
18 System.out.format("%-16s %10.2f %03d %10.2f\n", nomes[i]. substring(0, 16),
19 precos[i], quantidades[i], totalDoProduto);
20 }
21 }
22 }
23 }

Código Java A.106: CumpoFiscal.java

~/k19/string$ javac CupomFiscal.java

~/k19/string$ java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002 37.50
Chocolate 5.00 003 15.00

424 www.k19.com.br

425 A.7. STRING

Refrigerante 3.89 014 54.46
Bolacha de Choco 1.80 058 104.40

Terminal A.221: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac CupomFiscal.java

C:\Users\K19\k19\string > java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002 37.50
Chocolate 5.00 003 15.00
Refrigerante 3.89 014 54.46
Bolacha de Choco 1.80 058 104.40

Terminal A.222: Compilando e executando em ambiente Windows

Exercício de Fixação 9

1 public class CupomFiscal {
2 public static void main(String [] args) {
3 System.out.format("--\n");
4 System.out.format("%27s\n", "CUPOM FISCAL");
5 System.out.format("--\n");
6 System.out.format("%-16s %10s %3s %10s\n", "PRODUTO", "UNITÁRIO", "QTD", "TOTAL");
7 System.out.format("--\n");
8
9 String [] nomes = {"Sorvete", "Chocolate", "Refrigerante", "Bolacha de Chocolate"};
10 double [] precos = {18.75 , 5.0, 3.89, 1.8};
11 int[] quantidades = {2, 3, 14, 58};
12 double totalDaCompra = 0;
13 for(int i = 0; i < nomes.length; i++) {
14 double totalDoProduto = precos[i] * quantidades[i];
15 if(nomes[i]. length () <= 16) {
16 System.out.format("%-16s %10.2f %03d %10.2f\n", nomes[i],
17 precos[i], quantidades[i], totalDoProduto);
18 } else {
19 System.out.format("%-16s %10.2f %03d %10.2f\n", nomes[i]. substring(0, 16),
20 precos[i], quantidades[i], totalDoProduto);
21 }
22 totalDaCompra += totalDoProduto;
23 }
24 System.out.format("--\n");
25 System.out.format("TOTAL: %.2f\n", totalDaCompra);
26 System.out.format("--\n");
27 }
28 }

Código Java A.107: CumpoFiscal.java

~/k19/string$ javac CupomFiscal.java

~/k19/string$ java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002 37.50
Chocolate 5.00 003 15.00
Refrigerante 3.89 014 54.46
Bolacha de Choco 1.80 058 104.40
--

www.facebook.com/k19treinamentos 425

RESPOSTAS 426

TOTAL: 211.36
--

Terminal A.223: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac CupomFiscal.java

C:\Users\K19\k19\string > java CupomFiscal
--

CUPOM FISCAL
--
PRODUTO UNITÁRIO QTD TOTAL
--
Sorvete 18.75 002 37.50
Chocolate 5.00 003 15.00
Refrigerante 3.89 014 54.46
Bolacha de Choco 1.80 058 104.40
--
TOTAL: 211.36
--

Terminal A.224: Compilando e executando em ambiente Windows

Exercício de Fixação 10

1 class MostraDados {
2 public static void main(String [] args) {
3 String nome = "Jonas Keizo Hirata";
4 int idade = 30;
5 double peso = 49.7345;
6
7 System.out.printf("%-30s | %03d | %.2fkg\n", nome , idade , peso);
8 }
9 }

Código Java A.108: MostraDados.java

Exercício de Fixação 11

~/k19/string$ javac MostraDados.java

~/k19/string$ java MostraDados
Jonas Keizo Hirata | 030 | 49.73kg

Terminal A.225: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac MostraDados.java

C:\Users\K19\k19\string > java MostraDados
Jonas Keizo Hirata | 030 | 49.73kg

Terminal A.226: Compilando e executando em ambiente Windows

Exercício de Fixação 12

426 www.k19.com.br

427 A.7. STRING

1 class Calendar {
2 public static void main(String [] args) {
3 java.util.Calendar exatamenteAgora = java.util.Calendar.getInstance ();
4 java.util.Calendar fundacaoK19 =
5 new java.util.GregorianCalendar (2010, 7, 27, 10, 32, 15);
6
7 java.text.SimpleDateFormat sdf =
8 new java.text.SimpleDateFormat("dd/MM/yyyy HH:mm:ss");
9
10 String exatamenteAgoraFormatada = sdf.format(exatamenteAgora.getTime ());
11 String fundacaoK19Formatada = sdf.format(fundacaoK19.getTime ());
12
13 System.out.println(exatamenteAgoraFormatada);
14 System.out.println(fundacaoK19Formatada);
15 }
16 }

Código Java A.109: Calendar.java

Exercício de Fixação 13

~/k19/string$ javac Calendar.java

~/k19/string$ java Calendar
04/07/2014 10:40:45
27/08/2010 10:32:15

Terminal A.227: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac Calendar.java

C:\Users\K19\k19\string > java Calendar
04/07/2014 10:40:45
27/08/2010 10:32:15

Terminal A.228: Compilando e executando em ambiente Windows

Exercício de Fixação 14

1 class GeraParcelas {
2 public static void main(String [] args) {
3 java.text.SimpleDateFormat sdf = new java.text.SimpleDateFormat("dd/MM/yyyy");
4
5 java.util.Calendar p = new java.util.GregorianCalendar (2015 , 7 , 15) ;
6 System.out.println(sdf.format(p.getTime ()));
7
8 p.add(java.util.Calendar.DAY_OF_MONTH , 30);
9 System.out.println(sdf.format(p.getTime ()));
10
11 p.add(java.util.Calendar.DAY_OF_MONTH , 30);
12 System.out.println(sdf.format(p.getTime ()));
13
14 p.add(java.util.Calendar.DAY_OF_MONTH , 30);
15 System.out.println(sdf.format(p.getTime ()));
16 }

www.facebook.com/k19treinamentos 427

RESPOSTAS 428

17 }

Código Java A.110: GeraParcelas.java

Exercício de Fixação 15

~/k19/string$ javac GeraParcelas.java

~/k19/string$ java GeraParcelas
15/08/2015
14/09/2015
14/10/2015
13/11/2015

Terminal A.229: Compilando e executando em ambiente Unix

C:\Users\K19\k19\string > javac GeraParcelas.java

C:\Users\K19\k19\string > java GeraParcelas
15/08/2015
14/09/2015
14/10/2015
13/11/2015

Terminal A.230: Compilando e executando em ambiente Windows

Questão 1

Resposta b

Objetos do tipo String são imutáveis. Ou seja, o conteúdo de um objeto desse tipo não pode ser
alterado. Dessa forma, a instrução da linha 4 não altera o objeto cuja referência está armazenada na
variável a.

Questão 2

Resposta c

A instrução da linha 3 cria um objeto do tipo String com o conteúdo “a”. Na instrução da linha
4, o operador += é utilizado para concatenar as strings “a” e “b”. Essa instrução cria um novo objeto
do tipo String com o conteúdo “ab”. A referência desse objeto é armazenada na variável a. Na linha
5, o operador += é novamente utilizado. Como a variável a armazena a referência de uma String

com o conteúdo “ab”, a instrução dessa linha cria um objeto do tipo String com o conteúdo “abc” e
armazena a referência desse objeto na variável a. Na linha 6, é então exibida a mensagem “abc”.

Questão 3

Resposta b

Na linha 3, um objeto do tipo String é criado com o conteúdo “K19”. Esse objeto é armazenado

428 www.k19.com.br

429 A.7. STRING

no pool de strings e a referência desse objeto é armazenada na variável s1. Na linha 4, a string “K19”
aparece novamente. Como um objeto do tipo String com o conteúdo “K19” está presente no pool de
strings, nenhum objeto é criado nessa linha. A variável s2 passa então a armazenar a referência pro
objeto criado na linha 3.

Questão 4

Resposta d

O literal “K19” aparece na linha 3. Assim, um objeto do tipo String com esse conteúdo é criado
e armazenado no pool de strings. Ainda na linha 3, um novo objeto do tipo String é criado com o
uso do operador new. Note que esse objeto não é armazenado no pool de strings. A referência desse
objeto é armazenada na variável a.

Na linha 4, um novo objeto do tipo String com o conteúdo “K19” é criado com a utilização do
operador new. Dessa forma, as variáveis a e b armazenam referências para objetos diferentes.

Na linha 5, como a string “K19” foi definida de forma literal, ela está associada a um objeto no
pool de strings. Assim, a variável c irá armazenar uma referência para esse objeto do pool de strings.

Portanto, até esse ponto, três objetos foram criados e cada variável armazena uma referência para
um objeto diferente.

Na linha 6, o operador == é aplicado aos operandos a e b. O operador == verifica se os objetos re-
ferenciados por essas variáveis são iguais. Como essas variáveis armazenam referências para objetos
distintos, essa operação devolve false.

Na linha 7, o operador == é aplicado aos operandos a e c. Como a e c armazenam referências para
objetos diferentes, essa operação devolve false.

Na linha 8, temos a instrução a.intern() == b. O método intern devolve a referência para um
objeto do pool de strings. Assim, como o objeto referenciado pela variável b não está no pool de
strings, as referências comparadas com o operador == são diferentes. Logo, esse operador devolve
false.

Na linha 9, a instrução a.intern() devolve a referência para o objeto do tipo String que possui o
conteúdo “K19” e está armazenado no pool strings. Como a variável c armazena a referência de um
objeto que está no pool de strings e que possui o conteúdo “K19”, então a referência devolvida por
a.intern() é a mesma que está armazenada em c. Portanto, o operador == devolverá true.

Na linha 10, como o objeto referenciado por a não está no pool de strings e c.intern() devolve a
referência de um objeto armazenado no pool de strings, o operador == dessa linha devolverá false.

Na linha 11, o método equals é aplicado às variáveis a e b. Como essas variáveis referenciam
objetos que possuem o mesmo conteúdo (a string “K19”), esse método devolverá true. Pela mesma
razão, a instrução da linha 12 exibirá true.

Questão 5

www.facebook.com/k19treinamentos 429

RESPOSTAS 430

Resposta b

Como o primeiro parâmetro da string de formatação (%f) não especifica a quantidade de casas
decimais que devem ser exibidas, por padrão são exibidas seis casas decimais. Assim, o número
exibido é 1.010101.

O segundo parâmetro da string de formatação (%.2f) indica que apenas duas casas decimais de-
vem ser exibidas. Logo, o número 1.01 é exibido.

Já o terceiro parâmetro da string de formatação (%.8f) indica que oito casas decimais devem ser
exibidas. Então, será exibido o número 1.01010101.

430 www.k19.com.br

	Sumário
	Prefácio
	Introdução
	O que é um Computador?
	Comunicação
	Formato Binário
	Unidades
	Arquiteturas de Processadores
	O que é um Programa?
	Linguagem de Máquina
	Linguagem de Programação
	Compilador
	Sistemas Operacionais
	Máquinas Virtuais
	Editores de Texto
	Terminal
	Hello World em Java
	Arquivos .java
	Arquivos .class
	Separando os Arquivos .java e os .class
	Versão do Compilador e da Máquina Virtual
	O que é o Método Main?
	Classes Executáveis
	Variações do Método Main
	Argumentos de Linha de Comando
	Exercícios de Fixação
	Exibindo Mensagens
	Comentários
	Indentação
	Engenharia Reversa
	Ofuscadores
	Exercícios de Fixação
	Erro: Compilar um arquivo inexistente
	Erro: Executar utilizando as extensões .class ou .java
	Erro: Não fechar os blocos
	Erro: Não fechar as aspas
	Erro: Trocar maiúsculas e minúsculas
	Erro: Esquecer o ponto e vírgula
	Erro: Esquecer o main
	Erro: Utilizar sequências de escape inválidas
	Exercícios Complementares
	Desafios
	Resumo
	Prova

	Variáveis
	O que é uma Variável?
	Declarando e Inicializando Variáveis
	Exibindo os Valores das Variáveis
	Copiando Valores
	Tipos Primitivos
	Tipos Numéricos Não Primitivos
	String
	Data e Hora
	Valores Literais
	O Modificador final
	Números Aleatórios
	Convenções de Nomenclatura
	Regras de Nomenclatura
	Palavras Reservadas
	Exercícios de Fixação
	Erro: Variáveis com nomes repetidos
	Erro: Esquecer a inicialização de uma variável local
	Erro: Trocar aspas simples por aspas duplas ou vice-versa
	Erro: Utilizar o separador decimal errado
	Erro: Valores incompatíveis com os tipos das variáveis
	Erro: Esquecer dos caracteres de tipagem para long ou float
	Exercícios Complementares
	Desafios
	Resumo
	Prova

	Operadores
	Introdução
	Conversões Entre Tipos Primitivos
	Conversões Entre Tipos Primitivos e Não Primitivos
	Conversão Entre Tipos Primitivos e String
	Conversões Automáticas
	Exercícios de Fixação
	Operadores Aritméticos
	Tipo do Resultado de uma Operação Aritmética
	Divisão Inteira
	Overflow e Underflow
	Regras para Operações Aritméticas com Valores Especiais
	Concatenação de Strings
	Operadores Unários + e -
	Exercícios de Fixação
	Operadores de Atribuição
	Operadores de Comparação
	Operadores Lógicos
	Exercícios de Fixação
	Operador Ternário ?:
	Operador de Negação
	Incremento e Decremento
	Avaliando uma Expressão
	Exercícios de Fixação
	Operações com Strings
	Operações com Data e Hora
	Exercícios de Fixação
	Erro: Utilizar operandos e operadores incompatíveis
	Erro: Divisão inteira por zero
	Erro: Armazenamento de valores incompatíveis
	Erro: Castings não permitidos
	Exercícios Complementares
	Resumo
	Prova

	Controle de Fluxo
	Introdução
	Instruções de Decisão
	Instrução if
	Instrução else
	Instruções de Decisão Encadeadas
	Exercícios de Fixação
	Instruções de Repetição
	Instrução while
	Instrução for
	Instruções de Repetição Encadeadas
	Exercícios de Fixação
	Instrução break
	Instrução continue
	Exercícios de Fixação
	Blocos Sem Chaves
	``Laços Infinitos''
	Instrução switch
	Instrução do-while
	Unreachable Code
	Exercícios de Fixação
	Erro: Não utilizar condições booleanas
	Erro: Else sem if
	Erro: Else com condição
	Erro: Ponto e vírgula excedente
	Erro: ``Laço infinito''
	Erro: Chave do switch com tipos incompatíveis
	Erro: Casos do switch com expressões não constantes
	Erro: Break ou continue fora de um laço
	Erro: Usar vírgula ao invés de ponto e vírgula no laço for
	Exercícios Complementares
	Resumo
	Prova

	Array
	Introdução
	O que é um Array?
	Referências
	Declaração
	Inicialização
	Acessando o Conteúdo de um Array
	Alterando o Conteúdo de um Array
	Outras Formas de Inicialização
	Percorrendo um Array
	Array Multidimensional
	Exercícios de Fixação
	Erro: Utilizar valores incompatíveis como índices de um array
	Erro: Não definir a primeira dimensão de um array em sua inicialização
	Erro: Acessar uma posição inválida de um array
	Exercícios Complementares
	Resumo
	Prova

	Métodos
	Introdução
	Estrutura Geral de um Método
	Parâmetros
	Resposta
	Exercícios de Fixação
	Passagem de Parâmetros
	Sobrecarga
	Varargs
	Exercícios de Fixação
	Erro: Parâmetros incompatíveis
	Erro: Resposta incompatível
	Erro: Esquecer a instrução return
	Erro: Não utilizar parênteses
	Exercícios Complementares
	Resumo
	Prova

	String
	Referências
	Pool de Strings
	Diferença Entre o Operador == e o Método equals
	Imutabilidade
	StringBuilder
	Formatação
	Formatação de Data e Hora
	Exercícios de Fixação
	Resumo
	Prova

	Respostas
	Introdução
	Variáveis
	Operadores
	Controle de Fluxo
	Array
	Metodos
	String

